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Abstract

Spatiotemporal data have unique properties and
require specific considerations. Forecasting spa-
tiotemporal processes is a difficult task because
the data are high-dimensional, often are limited
in extent, and temporally correlated. Hence, we
propose to evaluate several deep learning-based
approaches that are relevant to spatiotemporal
anomaly forecasting. We will use marine heat-
waves as a case study. Those are observed around
the world and have strong impacts on marine
ecosystems. The evaluated deep learning methods
will be integrated for the task of marine heatwave
prediction in order to overcome the limitations
of spatiotemporal data and improve data-driven
seasonal marine heatwave forecasts.

1. Motivation: Challenges in Spatiotemporal
Data

Geophysical data have unique spatiotemporal properties,
which require specific considerations when used to build a
machine learning-based prediction system. While machine
learning approaches are commonly used to perform forecast-
ing tasks, spatiotemporal forecasting has its own specifici-
ties that have to be accounted for when selecting a suitable
approach. The selection process requires understanding the
features of spatiotemporal data, which are high-dimensional,
often are limited in extent, and temporally correlated. Below
we will review the characteristics of spatiotemporal data in
detail.

High dimensionality: Environmental data are indexed by
up to three dimensions in space and one in time. Addition-
ally, a single climate event is usually caused by multiple
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factors. Either observations or reanalysis datasets com-
monly contain tens to hundreds of variables that describe
a single system. Domain knowledge can help select and
hence reduce the number of variables to use as predictors
in a machine learning algorithm. For example, in a re-
cent study of marine heatwaves in the northwest Atlantic,
the heatwave in 2012 was primarily driven by atmospheric
forcing and the heatwave in 2017 was driven by offshore
oceanic forcing (Gawarkiewicz et al., 2019), indicating that
the roles of different types of forcing vary from event to
event. However, without domain knowledge, determining
the right combination of inputs from many variables is not
so straightforward. With the increasing demand for more
interpretable machine learning models, the trend has been to
introduce more variables as predictors into a model, which
leads to high dimensionality in the input. For example, in El
Nifio—Southern Oscillation (ENSO) forecasts, besides sea
surface temperature and heat content anomalies (Ham et al.,
2019), is it possible to include more inputs into the model,
such as zonal wind anomalies (Lai et al., 2018) and sea level
pressure anomalies (Manatsa et al., 2008)? Hence, select-
ing an appropriate number of variables from spatiotemporal
data remains an open research question.

Limited data: The training of a robust deep learning model
requires as much heterogeneous data as possible in order for
the model to learn the entire possible range of behavior of
the system. However, spatiotemporal data are often limited
in extent. Temporally, data collection has evolved a lot with
the advances of physical equipment and technology, and
the quality and extent of collected environmental data have
increased greatly in the mid-to-late 20" century. Meanwhile,
unlike the big data that is related to human activities which
are growing quickly, such as health records, surveillance
videos, and social media activities, new geophysical data
are generated relatively slowly.

Spatially, collection is limited to the physical environment
on Earth and the resolution might be rather low. For exam-
ple, in the NCEP Global Ocean Data Assimilation System
(GODAYS) dataset (from 1980 to 2020), the spatial resolution
of the dataset is 1 by 0.333 degrees (360 longitudes between
0.5 and 359.5 and 418 latitudes between -74.5 and 64.499)
(Behringer & Xue, 2004). This degree of spatial resolution
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may not be enough to capture localized climatological phe-
nomena, and the temporal resolution may not be sufficient
for training a robust deep learning model. The temporal
and spatial limitations of collecting data are unlikely to be
mitigated by simply modifying the intervals.

Transfer learning, including one-shot learning (Li et al.,
2006) and zero-shot learning (Palatucci et al., 2009), from
a similar learning task has proven its feasibility in the spa-
tiotemporal space (Zhang et al., 2021; Buckchash & Raman,
2021). However, how to find a similar large dataset and/or
an appropriate pre-trained model for transfer learning re-
mains a problem.

Temporal correlations: Spatiotemporal data are spatially-
correlated between nearby locations and temporally-
correlated between adjacent timestamps (Atluri et al., 2018).
The common assumption that data is independent and iden-
tical distributed (iid) does not hold true. Spatial represen-
tations can be learned by machine learning, but temporal
correlations are problematic. In turn, non-iid distribution of
data could lead to difficulties in the training and evaluation
process of machine learning models. For example, standard
goodness-of-fit measures such as cross-validation are not ap-
propriate in this case. In this regard, spatiotemporal data are
very similar to videos and other sequence-type data, where
relatively strong temporal correlations are present. In this
sense, we could use deep learning-based video processing
methods to handle spatiotemporal data. In addition, the
sliding window and the expanding window methods could
be utilized for model evaluation.

2. Seasonal Marine Heatwave Forecasts

Marine heatwaves: Marine heatwaves (MHWSs) are ob-
served around the world and have strong impacts on marine
ecosystems; such impacts include shifts in species ranges,
local extinctions, and can have a follow-on economic impact
on seafood industries (Hobday et al., 2016). The devastating
impact on marine ecosystems caused by MHWs brings irre-
versible loss of species or foundation habitats (Oliver et al.,
2019), for example, mass coral bleaching and substantial
declines in kelp forests and seagrass meadows (Holbrook
et al., 2020). MHWs also affect aquaculture businesses and
area-restricted fisheries because of the change of the distri-
bution of sea life and then their production (Hobday et al.,
2018), such as mussel, oyster and salmon farms. Accu-
rately foreseeing MWHs, 6 months in advance for instance,
and preparation for these potential climate impacts, such as
collecting samples for repopulation, DNA sampling, and ad-
justing production beforehand, have both positive ecological
and socioeconomic implications.

Anthropogenic climate change is expected to cause an in-
crease in both the intensity and frequency of MHWs. There

are multiple definitions of MHWSs, and we use the follow-
ing one that has been widely accepted: MHW:s are discrete
prolonged anomalously warm water events in a particular lo-
cation and are generally identified following as a period of at
least five consecutive days for which seawater temperature
is warmer than the 90™ percentile based on a 30-year histor-
ical baseline period (Hobday et al., 2016). Such warm water
events can be characterized using metrics, such as maxi-
mum temperature (Berkelmans et al., 2004), temperature
anomaly (Smale & Wernberg, 2013), degree heating days
(Maynard et al., 2008), etc. Even with the same metrics,
different datasets may provide substantially different MHW
information (Hobday et al., 2016). Dynamical prediction
systems have been widely used for MHW forecasts (Mer-
ryfield et al., 2013; Saha et al., 2014; Vecchi et al., 2014).
For example, a case study of the California Current System
(CCS) MHW of 2014-2016 uses 8 global coupled climate
prediction systems to predict the MHW up to 8 months
ahead (Jacox et al., 2019); in this case, 2 of the 4 phases are
predicted well by dynamic models but 2 others are missed.
Hence, as a complement to these numerical models, deep
learning-based models can possibly improve the MHW’s
predictability.

Datasets: We selected several datasets in our explorative
analysis. The datasets provide spatiotemporal information
that is associated with MHWs in particular. Besides the
global data, we are also interested in spatiotemporal data in
a local area around New Zealand. The datasets related to
this research are:

* NCEP Global Ocean Data Assimilation System (GO-
DAS) (Behringer & Xue, 2004), global numerical data
from 1980 to present, with a spatial resolution of 1 by
0.333 degrees.

¢ Simple Ocean Data Assimilation (SODA) (Giese &
Ray, 2011), global numerical data from 1870 to 2010,
with a spatial resolution of 0.5 by 0.5 degrees.

* Coupled Model Intercomparison Project Phase 5
(CMIP5) (Taylor et al., 2012), global numerical data
from 1861 to 2100, with a spatial resolution of 5 by 5
degrees.

* Moana Project Backbone v2 (O’Callaghan et al., 2019),
numerical data around New Zealand from 1993 to 2017,
with a spatial resolution of approximately 5 kilometers
and a 3-hourly output period.

For the time scale, we are planning to use the monthly
average fields as we are aiming at seasonal predictions. In
the next section, we select and briefly review some deep
learning methods for forecasting on spatiotemporal data.
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3. Deep Learning for Spatiotemporal
Anomaly Forecasting

In recent years, various deep learning-based approaches
have been proposed, and among them, some were imple-
mented for spatiotemporal data specifically and others were
applied for this type of data. Detecting and forecasting
anomalies in spatiotemporal data require consideration of
the following aspects. Firstly, the type of machine learning
task needs to be determined. For example, if the anomalies
are unknown phenomena or have not previously occurred,
then the learning task is unsupervised. On the other hand, if
anomalies have been observed, such as MHWs, the learning
type is generally supervised or semi-supervised, depending
on the conditions of data and availability of labels. Secondly,
the distribution of anomalies is usually imbalanced (Pang
et al., 2021), for instance, accounting for less than 5 percent
of data. The data imbalance makes anomalies unlikely to
be detected and predicted using standard approaches and re-
quires specific data pre-processing methods. Thirdly, there
could be multiple anomaly classes within one dataset (Pang
et al., 2021), such as detecting tropical cyclones and atmo-
spheric rivers using the Community Atmosphere Model v5
(CAM 5.0) dataset (Neale et al., 2010). Such heterogene-
ity makes unsupervised learning more difficult. Fourthly,
domain knowledge reveals that teleconnections influence
anomalies (Cachay et al., 2020). Therefore, methods that
tackle such relational data structure are needed.

In this section, we select and review some methods of inter-
est for this research. These methods are applied to the case
study of MHWs but are potentially useful outside of the
MHW scope, for general spatiotemporal anomaly forecasts.

CNNs: Previous studies have demonstrated that CNNs
could be used to forecast high-dimensional spatiotemporal
data and outperform some state-of-the-art numerical mod-
els. For example, CNN-based models provide improved
predictions for ENSO up to 1.5 years in advance, using sea
surface temperature and heat content anomalies as input
(Ham et al., 2019). Emulating a simple general circulation
model (GCM), CNNs have been shown to successfully per-
form weather forecasting up to 14 days in advance with both
input and output being high-dimensional (40 channels and
2048 grid points) (Scher, 2018). However, there are some
drawbacks of CNNss, especially in the climate domain.

¢ CNNss that are designed to process 2D planar images
may not suit spherical data which is connected with
the globe.

* CNN-only models have no specific methods to tackle
temporal correlations.

* CNNs have difficulty modeling teleconnections (large-
scale atmospheric patterns) (Cachay et al., 2020).

* CNNs are slow in the training process.

In order to handle these drawbacks, some models have been
proposed for modifying the convolutional layers (such as us-
ing spherical CNNs (Cohen et al., 2018)) or adding another
type of layer (such as CNN-CapsNets (Chattopadhyay et al.,
2020)) in a CNN architecture, or finding outperforming
alternatives to CNNs (such as GNNs (Cachay et al., 2020)).

Spherical CNNs: CNNs are designed to perform learning
and forecasting tasks on 2D planar images, while as one
of its variants, spherical CNNs are invented to detect pat-
terns regardless of the rotation over a sphere, i.e. rotation
equivariance (Cohen et al., 2018). Spherical CNNs are a
potential tool to learn information from global geophysical
data. Furthermore, graph-based spherical CNNs improve
the efficiency of spherical CNNs while keeping rotation
equivariance by sampling a sphere as a graph, and have
been applied to global extreme climate event segmentation
(Defferrard et al., 2019).

CNN-LSTMs: Deep learning for video understanding and
prediction is another area of interest that might be appro-
priate for use in spatiotemporal forecasting. CNN long
short-term memory networks (CNN-LSTMs) are common
baseline models for video prediction. For example, a CNN-
LSTM-based predictive coding network has outperformed
the previous CNN-LSTM models on the Rotating Faces
Dataset (Singular Inversions) and the CalTech Pedestrian
Dataset (Dollar et al., 2009; Lotter et al., 2016). Related
to the climate domain, CNN-LSTMs are applied to fore-
cast short-term global solar irradiance (Zang et al., 2020;
Gao et al., 2020). Such networks could tackle temporal
correlations and can be utilized in our research.

CapsNets: As an alternative to CNNSs, capsule neural net-
works (CapsNets) can better model hierarchical relation-
ships (Sabour et al., 2017). The structures called “cap-
sules” reuse output from several lower capsules and then
form more stable representations for higher capsules (Hin-
ton et al., 2011). CapsNets have demonstrated their abilities
to forecast extreme weather patterns up to 5 days ahead us-
ing mid-tropospheric large-scale circulation patterns (Z500)
(Chattopadhyay et al., 2020).

CNN-AEs and GANs: Limitation in extent and incomplete
labels are common problems with geophysical data, which
make full-supervised learning unable to provide satisfying
outcomes. CNNs combined with autoencoders (CNN-AEs)
could generate new data and/or labels from existing labeled
data, and perform learning on both. In an extreme weather
detection task, the semi-supervised CNN-AEs are trained on
a simulation from 1979 to 2005 with errors in the labeling,
and outperformed the comparative fully-supervised CNNs
in some aspects (Racah et al., 2016). More specifically,
physical-based variational AEs and generative adversarial
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networks (GANs) are possible to better handle the incom-
plete domain knowledge.

GNNs: As a potential alternative to CNNs, graph neural
networks (GNNs) process rasterized spatiotemporal infor-
mation that has been transformed from Euclidean space.
GNNSs have the advantage of finding the hidden connections
(via edges) among nodes and filtering out the non-essential
spatial information outside nodes to reduce computational
expense. GNNs have been proposed as a way to model
teleconnections and have outperformed CNNs for multi-
year ENSO forecasts (Cachay et al., 2020). GNNss also suit
network-type data. Traffic forecasting (Song et al., 2020;
Wu et al., 2019) and earthquake prediction (van den Ende
& Ampuero, 2020) are other areas where GNNs have been
employed.

4. Future Work

We propose to consider the following questions in our fur-
ther research.

* How to select an appropriate number of predictors for
spatiotemporal forecasting, what domain knowledge
is required, and whether we can make the learning
semi-supervised or unsupervised.

* How to overcome geophysical data insufficiency, and
whether we can use the generative models to create
additional data.

* Whether transfer learning, including one-shot learning
and zero-shot learning, can be used for data insuffi-
ciency, and how to select appropriate relevant datasets
and/or pre-trained models.

* How to tackle temporal correlations, and whether the
video processing techniques can be used for spatiotem-
poral data.

* Whether we can use the reviewed deep learning meth-
ods that tackle spatial and/or temporal information,
such as spherical convolutions, capsules, and graph
reasoning, to improve the MHW predictability.

As a first step towards the research aims outlined above, we
are planning to create a benchmark spatiotemporal dataset
for MHWs, evaluate the deep learning approaches that are
relevant to spatiotemporal forecasts, and propose an effec-
tive predictive model for MHW:s that could outperform the
existing ones such as (Jacox et al., 2019).
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