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Abstract
The Arctic Ocean is warming at an alarming rate
and will likely become ice-free in summer by
mid-century. This will be accompanied by higher
ocean surface waves, which pose a risk to coastal
communities and marine operations. In order to
develop climate change adaptation strategies, it is
imperative to robustly assess the future changes
in the Arctic ocean wave climate. This requires a
large ensemble of regional ocean wave projections
to properly capture the range of climate modeling
uncertainty in the Arctic region. This has been
proven challenging, as ocean wave information is
typically not provided by climate models, ocean
wave numerical modeling is computationally ex-
pensive, and most global wave climate ensembles
exclude the Arctic region. Here we present a
framework to develop a CNN-LSTM deep learn-
ing network which could be potentially used to
obtain such a large ensemble of Arctic wave pro-
jections at an affordable cost.

1. Introduction
The Arctic is a hot spot for global climate change as it is
warming about twice as fast as global temperatures due
to the so-called Arctic amplification. This is leading to a
rapid decline in sea ice extend; the Arctic sea-ice extend
has shrunk by an average of 13.4% with the last two low-
est records occurring over the last decade (Witze, 2020).
Recent climate simulations project a likely ice-free Arctic
summer by mid-century (Wei et al., 2020) although it could
be as early as 2035 (Guarino et al., 2020). Extended ice-free
seasons and expanded open water areas favor the increase
of ocean surface waves (Casas-Prat & Wang, 2020a). This
poses a great risk to coastal communities (due to increased
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infrastructure damage, coastal erosion and flooding), and
threatens the safety of existing and emerging offshore oper-
ations. This is a pressing issue as this exacerbates existing
vulnerabilities in low-lying Arctic coastal areas, which have
already experienced coastal damage in the last few years
(Casas-Prat & Wang, 2020b).

Climate models are constantly updated to produce (im-
proved) simulations of future climate. These coordinated
efforts are part of the international Coupled Model Intercom-
parison Projects (CMIP), in the context of the Intergovern-
mental Panel on Climate Change (IPCC). The 2013 IPCC
fifth assessment report (AR5) featured climate models from
CMIP5, while the upcoming 2021 IPCC sixth assessment
report (AR6) will feature new state-of-the-art CMIP6 mod-
els. A key objective of CMIP is to develop large ensembles
of standard climate projections that account for the main
factors of uncertainty: climate model parameterizations, in-
ternal climate variability, greenhouse gas scenario. Morim
et al. (2019) showed, for instance, that a single method to
asses projected changes in ocean wave heights might be
unable to capture up to 50% of the total uncertainty.

An in-depth understanding of the future changes in ocean
wave climate is key to develop a climate adaptation strat-
egy that properly addresses the aforementioned challenges.
Casas-Prat & Wang (2020b) developed and presented the
first regional multi-model Arctic ocean wave ensemble,
which was obtained with a dynamical numerical modelling
approach driven by simulations from five CMIP5 models.
Their historical simulations were validated against state-of-
the-art reanalysis (historical simulated data that assimilate
observations) and found that their simulations were within
the range of uncertainty of such reference products. Their
future simulations showed that the annual maximum wave
heights along coastlines would increase about 1–3 m by
the end of the century, representing a relative increase up
to 2–3 times their historical value. While these projected
changes are statistically robust, confidence is low due to
using a small ensemble.

Currently, there is lack of evidence that a climate model
of better performance in simulating the historical climate
will necessarily produce better projections of future climate.
This lack of evidence is more so in the dramatically chang-
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ing Arctic region as climate biases might change over time
due to the strong climate change responses. Therefore, a
large ensemble of wave projections is needed to cover major
sources of uncertainty. This has been proven challenging
as most climate models do not include information about
ocean surface waves and ocean wave numerical modelling
is computationally expensive. Also, most global wave pro-
jections (needed to provide boundary conditions for Arctic
regional numerical modelling) exclude the Arctic region or
do not account for sea ice (Morim et al., 2019). To reduce
computational cost, statistical methods have been developed
and implemented in the past decade. These are typically
based on weather maps or grid point regression models
with physical-based predictors, and their performance can
be comparable to that of numerical simulations. However,
none has been applied to the Arctic region, probably due to
the complex explicit implementation of the sea ice driver in
simplified predictors, and the inability to use reanalysis data
(only) to infer the relationship between input and output
data in the future climate, as explained in Section 2.

Machine learning application to ocean wave modelling is
still rather limited, and has focused mostly on wave fore-
casting (James et al., 2018). Deep learning, and in particular
CNN are a promising approach to address this problem
given their success in computer vision, and particular im-
age/video generation (e.g. Castrejón et al., 2019). Here
we present a CNN approach with preliminary results using
the CMIP5-based dataset developed by Casas-Prat & Wang
(2020b). Future work involves further testing and model
tuning with more CMIP5-based ensemble members as well
as assessing whether the inclusion of time recurrence (using
the proposed LSTM-CNN model) contributes to significant
model improvement. The successfully trained model will
be employed to develop a large multi-model, multi-scenario
and multi-run ensemble of Arctic wave projections using
the latest CMIP6 climate simulations.

2. Data
As mentioned in the Introduction, we use the wave projec-
tions developed by Casas-Prat & Wang (2020b), which span
the periods 1979–2005 (historical period) and 2081–2100
(future period) and were obtained using the WAVEWATCH
(WW3) wave model (The WAVEWATCH III Development
Group (WW3DG), 2016). Simulations of hourly signifi-
cant wave heights (SWH) were obtained by driving WW3
with 3-hourly 10-m surface winds (W10) and daily sea ice
concentrations (SIC) simulated by five CMIP5 models for
the historical and RCP8.5 scenario future period, respec-
tively. WW3 was forced at the boundaries with wave spectra
extracted from global wave projections. In particular, the
GFDL-ESM2M-derived ocean wave ensemble member is
used to train and validate our network with 75% and 25%

of the data, respectively.

In-situ observations in the Arctic are scarce and satellite
data is limited to the last couple of decades. The notable
differences between historical and future spatial features
in this drastically changing environment hinders the use of
reanalysis (historical) data even if that is less affected by
model biases thanks to data assimilation. A model trained
with historical data only would likely fail to predict future
patterns in the emerging open waters. Therefore, the CMIP5-
based simulations corresponding to the selected ensemble
member are here considered as the ground truth of our deep
learning approach, for which both training and validation
datasets are comprised by frames from both the historical
and future periods. Further testing of the proposed model
will be carried out with the remaining four CMIP5 projec-
tion sets developed by Casas-Prat & Wang (2020b). Once
achieving a desirable performance (low RMSE), inference
will be applied to the CMIP6 data to develop a large ensem-
ble of Arctic wave projections derived with the most up to
date climate projections.

Input data are daily SIC, and 3-hourly u- and v- components
of W10, noted as U10 and V10. Output data is the hourly
SWH. The original dataset, which is comprised by regular
and unstructured lon-lat grids, is projected and interpolated
to obtain regular 128 × 128 pixel frames on a polar stereo-
graphic projection. As we want to avoid having to rely on
boundary conditions provided by global wave projections,
we extend the W10 domain to lower latitudes to capture
remotely generated waves coming from the Atlantic Ocean.

3. Proposed deep learning framework
Based on the parsimony principle, we start with a rather sim-
ple network shown in Figure 2. This model uses a CNN to
encode the SIC, U10 and V10 frames via six convolutional
layers, using striding to reshape and reduce dimensionality.
After the bottleneck, an almost symmetrical encoder is ap-
plied to predict the corresponding SWH frame at the same
time step. Normalization and LeakyReLu activation func-
tions are employed with the exception of the output layer
for which a ReLu function is used as SWH is strictly posi-
tive by definition. A RMS loss function is used and Adam
optimizer is implemented with early stopping to avoid over-
fitting. Preliminary results show a rapid reduction of the
training and validation loss in the first few epochs, with
RMSE dropping from about ∼m to ∼cm. As illustrated in
Figure 1, this model is promising despite not including time
recurrence. We argue this is thanks to relating input and
output data with an imaging approach with CNN that can
retain spatial features that implicitly provide information
about the past. This contrasts with a numerical modelling
scheme that is implemented at each grid point, with local
source terms, and interaction with nearby cells only.
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Figure 1. Preliminary results for the proposed CNN model: ground
truth (left) vs prediction of a random SWH frame (right) in m.

Next, we propose to investigate a more complex RNN ap-
proach, as shown in Figure 3. LSTM helps to select what
information is relevant in the chosen time window by a
combination of sigmoid and tanh functions. It can also
keep information up to about 100 steps reasonably well,
which is likely enough to capture the traveling time of the
remotely generated waves propagating across the domain.
Note that ocean waves are affected by two main temporal
dependencies acting at two different spatial scales: the non-
instantaneous transfer from wind to wave energy during
local wave growth and wave propagation and swell develop-
ment from waves that are remotely generated. The LSTM
is applied at the encoded data (which here includes SWH
as input data as well) corresponding to the frames of a time
window prior to the predicted SWH frame.

4. Limitations and future work
The proposed CNN/RNN model is trained by numerically
simulated data produced by WW3 and therefore we can only
aim to replicate the performance of such numerical model
configuration. Therefore, any possible biases present in the
Casas-Prat & Wang (2020b) dataset that were derived by
the inherent limitations of the WW3 modelling approach,
or by the chosen parameterizations for this particular ex-
periment will also be present in the predictions obtained
by our proposed deep learning model. However, the (likely
larger) uncertainties derived by the ocean wave drivers (i.e.
W10, SIC), which relate to climate model parameterizations,
internal climate variability and greenhouse gas emissions,
will be well covered thanks to considering a large number
of simulations of W10 and SIC projected by CMIP6. This
relies on the reasonable assumption that this five-model
CMIP5 wave ensemble capture most representative wave
processes that can occur in the large CMIP6 ensemble.

Besides the steps mentioned in Section 3, future work also
includes to study the sensitivity of the proposed deep learn-
ing model performance to the choice of the training vs. test

datasets from the available five model ensemble, and to
assess the degree of performance possibly achieved when
using only historical data to train the model. Also, the po-
tential model to be used to develop the large ensemble will
be subject to further testing that targets the extremes via
extreme value analysis.
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Figure 2. Proposed network architecture without time recurrence: this model uses a CNN to encode frames of SIC, UAS, VAS at a given
timestep, which is later encoded to predict the corresponding SWH at the same time step

(t− n)

Hs SIC W1
0

(...)

(t− 1)

Hs SIC W1
0

(t)

Hs SIC W1
0

12
8

Input
[hs,sic,u10,v10]

64
32 16

8 4 2

12
8

Input
[hs,sic,uas,vas]

64
32 16

8 4 2

12
8

Input
[hs,sic,uas,vas]

64
32 16

8 4 2

LSTM

4 8
16 32

64

12
8

Output
[hs]

SW
H

(t + 1)

[B,T,C,W,H] ENCODER

DECODER

Figure 3. Proposed network architecture with time recurrence: this model uses a CNN to encode the frames of SIC, UAS, VAS and SWH
for each time step individually. At each timestep a LSTM receives an encoding corresponding to the previous t− n to t time window,
which is later decoded to predict the SWH frame at timestep t+ 1


