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Abstract
We plan to use nascent data-driven causal discov-
ery methods to find and compare causal relation-
ships in observed data and climate model output.
We will look at ten different features in the Arctic
climate collected from public databases and from
the Energy Exascale Earth System Model (E3SM).
In identifying and comparing the resulting causal
networks, we hope to find important differences
between observed causal relationships and those
in climate models. With these, climate model-
ing experts will be able to improve the coupling
and parameterization of E3SM and other climate
models.

1 Introduction
Climate models are critical to our understanding of cli-

mate change. We believe there is an opportunity to apply
causal inference methods to these models to improve pre-
dictions. We can understand the quality of a model by
comparing it with observations of the natural phenomena
being simulated. From there, we can make the necessary
improvements to the model, but where to start? Currently
models are developed using a trial and error approach, in
which a model is designed and parameterized and the result-
ing accuracy is observed. For computationally expensive
models this approach quickly becomes inefficient. We pro-
pose to investigate the causal relationships between features
and their weights to better target reparameterization and
feature selection efforts. We propose to focus on the pan-
Arctic region because we previously studied Earth system
model (ESM) prediction discrepancies there (Nichol et al.,
2021). The Arctic climate, though important in itself, also
has global climate implications.

In Runge et al. (2019a), a recent review of causal methods,
they argue that causal discovery is well-suited to improving
climate models. Nowack et al. (2020) provide an example
analysis of a global climate model. This work proposes
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to build these publications, by extending this nascent field
to Energy Exascale Earth System Model (E3SM) (E3SM
Project, 2018) and a including multiple feature analysis.

In contrast to methods based in statistical correlations,
causal inference tells us why systems behave the way they
do. Discovering the underlying causal structure in data
and then comparing those structures from observed and
simulated datasets will give us a richer understanding of the
differences between the data sources.

Commonly, causal effects are determined and quantified
by interventionist experiments, usually in randomized tri-
als. Because of the magnitude, complexity, and uniqueness
of the Earth’s climate, there are significant feasibility and
ethical problems with controlling and intervening in the cli-
mate for experimentation. For this reason, climate science
is largely studied with coupled numerical models. Each
model encapsulates subsystems and subprocesses that work
together to determine the long-term climate.

The status-quo in Earth system model evaluation is based
on simple descriptive statistics, like mean, variance, cli-
matologies, and spectral properties of model output de-
rived from correlation and regression methods (Runge et al.,
2019a). These methods can be simple to implement and
interpret but are often ambiguous or misleading; resulting
associations can be spurious and the directions of effects is
fundamentally unknown.

In recent decades, a rigorous mathematical framework has
been developed for observational causal inference by Pearl,
Spirtes, Glymour, Scheines, and others (Spirtes et al., 2000;
Pearl, 2009; Spirtes & Zhang, 2016). The framework is
largely based on Reichenbach’s (Reichenbach, 1991) Com-
mon Cause Principle: that if two variables are dependent,
there must be a causal relationship between the two or a
third common driver of the two. Most importantly, causal
methods identify the direction of observed effects between
variables and detect spurious correlations.

The model we are interested in for this work is the United
States Department of Energy Energy Exascale Earth Sys-
tem Model (E3SM) (E3SM Project, 2018). This model is
a coupling of atmospheric, ocean, river, land, land ice, and
sea ice numerical models. Its goal is to use exascale com-
puting to output high-resolution simulations of natural and
anthropogenic effects in the climate.

The Arctic climate has significant direct and indirect im-
pacts on global climate, ecology, geopolitics, and economics
(Hassol, 2004; Richter-Menge et al., 2019; Smith & Stephen-
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son, 2013). In particular, the volume and extent of Arctic
sea ice are important indicators for the current state and
projections of global climate change (Goosse et al., 2018;
Sevellec et al., 2017; Runge et al., 2015; Cvijanovic et al.,
2017). Because of this, effectively understanding the causal
drivers in the Arctic climate system is requisite for under-
standing the future of our climate and how we can mitigate
or intervene in climate change.

Climate models are in active development and the Cou-
pled Model Intercomparison Project (CMIP) is a group that
collects and curates modern climate models for world-wide
collaboration. Researchers have found that models in phases
3 and 5 of CMIP underestimate the rate of Arctic sea ice loss
on average (Rosenblum & Eisenman, 2017; Taylor et al.,
2012; Stroeve et al., 2007). Figure 1 shows the difference
between observed sea ice extent and E3SM’s modeled pre-
diction.

In previous work, we used random forest feature analy-
sis to determine which summer-time features in the Arctic
are most predictive of yearly sea ice extent minimums in
September (Nichol et al., 2021). We then compared re-
sults from observed data and simulation output data. This
approach allowed us to discover and compare nonlinear
relationships in the climate systems. Random forest fea-
ture importance values are correlations and direction can
only be inferred from each feature to the single predictand.
Therefore, inter-feature relationships in the model cannot be
interpreted causally. Finding differences between in causal
relationships between climate models and observed data
will identify clear, actionable problems with the models.

2 Data
We selected time series data for ten features in the Arctic

consisting of monthly mean values for each year of avail-
able data. Empirical data was collected from observational
and reanalysis data products, and simulated data were taken
from five ensemble members of the E3SM historical dataset
(E3SM Project, 2018; Golaz et al., 2019). The selected fea-
tures are a subset of physical quantities simulated by E3SM
in the Arctic and are the same ones used in our previous
work with random forests, (Nichol et al., 2021). We origi-
nally chose these features because they match observable
features in nature and we hypothesized they would be good
predictors of sea ice loss. Through feature analysis, we
discovered that some inputs were far more predictive than
others, but we did not have a causal inference framework to
explain why. Each feature of the observed dataset is a time
series beginning with the start of the satellite era in 1979 to
2018. The E3SM historical ensembles span 1850 to 2014.

The observational data includes monthly sea ice extent
computed from gridded, daily, passive-microwave satellite
observations of sea ice concentration provided by the Na-
tional Snow & Ice Data Center (Peng et al., 2013). Sea ice
concentration is a percentage value of ice in each grid cell,

and sea ice extent (SIE) is computed as the total area of cells
containing more than 15% ice. Sea ice volume (SIV) reanal-
ysis data were provided by the Pan-Arctic Ice Ocean Mod-
eling and Assimilation System (Schweiger et al., 2011). At-
mospheric data, total cloud cover percentage (CLT), down-
ward longwave flux at surface (FLWS), pressure at the sur-
face (PS), near-surface specific humidity (SSH), tempera-
ture at the surface (TS), wind u component/zonal (uwind),
and wind v component/meridional (vwind)) were from an
atmosphere reanalysis provided by the National Centers
for Environmental Prediction (NOAA et al., 2019a). Sea
surface temperature (SST) was provided by the National
Oceanic and Atmospheric Administration (NOAA et al.,
2019b). For each of the atmospheric data variables, as well
as SST, monthly Arctic area averages were computed from
the global gridded fields. Simulated data features were se-
lected to match the observation dataset.

Figure 1. Comparison of observed, pan-Arctic mean September
sea ice extent with predictions from E3SM’s historical ensembles
1-5. The mean of E3SM simulations is shown with 95% confidence
interval (shaded).

Figure 1 shows the difference between observed and
E3SM’s simulated sea ice extent in September each year
between 1979 and 2014. September is when sea ice extent
is at its minimum. The model generally predicts the same
trend but fails to determine critical lows in yearly sea ice ex-
tent. While the simulations generally predict sea ice extent
well, there are significant departures (fall outside the 95%
CI) in particular years. For example, in 2012 there was a re-
versal between simulation, which predicted a year-over-year
increase in sea ice, but instead a record low was observed.
Since sea ice extent has a non-linear effect on the global
climate, providing a causal explanation for these departures
is critical.

3 Approach
Causal inference is a mathematical framework for an-

swering questions about why phenomena occur. Causal
modeling is an effort to discover, describe, and analyze the
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relationships between cause and effect (Pearl, 2009; Spirtes
& Zhang, 2016). The calculus of causation is defined in
two languages: a causal diagram, expressing what we know,
and a symbolic language, expressing what we want to know
(Pearl & Mackenzie, 2018). The methods we propose derive
a causal diagram from the given data.

A causal diagram is a directed graph where arcs repre-
sent the causal relationships between variables. Figure 2 is
a diagram depicting correlations between variables in the
observed dataset from our previous work. Only mean values
from June in each year between 1979 and 2014 were in-
cluded. For example, the PC algorithm (Spirtes et al., 2000)
could take a diagram such as the one in Figure 2 as input
and iteratively remove spurious correlations and determine
the causal direction between the remaining links.
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Figure 2. Diagram showing correlated relationships between vari-
ables in June from the observed dataset between 1979 to 2014.
Green indicates a positive correlation and orange indicates a nega-
tive correlation. The correlation threshold is ±0.6.

There are multiple methods for constructing causal net-
works that are candidates for investigation in this work.
These include causal network learning algorithms, such as
the Peter-Clark (PC) algorithm (Spirtes & Glymour, 1991),
structural causal model frameworks, such as LiNGAM
(Shimizu et al., 2006), and the fast causal inference (FCI)
algorithm. Each of these require sets of assumptions about
the given data describing the system. We will need to de-
termine which assumptions we can meet with the available
data. Due to the nonlinear, stochastic, high-dimensional
nature of the climate system, it is likely that causal network
learning algorithms and structural causal models will be
more effective.

3.1 The PCMCI method

We plan to attempt our analysis with PCMCI (Runge
et al., 2019b) first. PCMCI extends the PC-algorithm by
adding momentary conditional independence (MCI) tests.
These remove false-positives left by the PC algorithm and
conditions on each variable’s causal parent and its time-
shifted parents as well. Thus, the algorithm is designed
to remove spurious relationships and identify concurrent
and time-lagged causal relationships. PCMCI was specifi-
cally designed for highly interdependent time series such as

climate data.
In (Nowack et al., 2020), the authors used time series data

for sea level pressure data collected at 50 locations around
the globe. The authors then examined the relationship be-
tween precipitation and the causal network skill scores for
sea level pressure to demonstrate that this method can help
identify dynamic coupling mechanisms arising from under-
lying physical processes. The Nowack et al. study is one
of the first causal network inference studies using large-
scale spatiotemporal data and provides a proof-of-concept
that such methods are viable for analyzing climate systems.
They looked at a single variable in various regions. In con-
trast, we plan to use PCMCI to analyze several different
quantities in the same region.

3.2 Comparing and evaluating causal models

An obvious first approach for comparing causal diagrams
is with standard graph comparison metrics such as global
properties and summary statistics: edge density, global clus-
tering coefficient, degree distribution, counts of subgraphs,
hamming distance, etc. However, these are defined by corre-
lation and do not address the causal nature of the networks.

Other metrics grounded in information theory, such as in-
formation flow, are more appropriate for causal networks but
possibly more difficult to interpret holistically. In (Runge,
2015), the authors present a framework for determining
information flow from multivariate causal diagrams.

A different approach is to consider the resulting models’
performance. This includes metrics such as true positive rate
(TP), false positive rate (FP), accuracy, positive predictive
value, false omission rate, the S-score, and the G-measure
and F1-score (metrics combining TP and FP). These require
a baseline model, such as the causal diagram of the observed
dataset, to measure the performance of a test model. These
are easier to interpret than information flow but are relative
measures and cannot be assessed independently.

4 Anticipated Contributions
The contributions of this work will bring climate model-

ing experts a step closer to understanding why E3SM does
not model certain Arctic quantities well, such as sea ice
extent. In our previous work, random forests were able to
elucidate which features were more or less important for
model predictability in observed and E3SM data. This work
should support those results and help explain the causal
drivers behind observed and E3SM results. Future research
after this work could include: considering more features
in the Arctic; other regions with known modeling biases,
such as the Antarctic; and other climate modeling problems,
such as determining the effects and sources of major climate
events. Clear examples are volcanic eruptions and anthro-
pogenic climate change and intervention. Developing more
informative analytics for climate models will hasten their
improvement and better inform policy decisions to mitigate
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and combat global climate change.

Acknowledgements
This work is supported by Sandia Earth Science Invest-

ment Area Laboratory Directed Research and Development
funding. Sandia National Laboratories is a multimission lab-
oratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Admin-
istration under contract DE-NA-0003525.

This paper describes objective technical results and anal-
ysis. Any subjective views or opinions that might be ex-
pressed in the paper do not necessarily represent the views
of the U.S. Department of Energy or the United States Gov-
ernment.

References
Cvijanovic, I., Santer, B. D., Bonfils, C., Lucas, D. D.,

Chiang, J. C. H., and Zimmerman, S. Future loss of
Arctic sea-ice cover could drive a substantial decrease in
california’s rainfall. Nature Communications, 8(1947),
2017.

E3SM Project. Energy Exascale Earth System Model
(E3SM). [Computer Software] https://dx.doi.
org/10.11578/E3SM/dc.20180418.36, April
2018. URL https://dx.doi.org/10.11578/
E3SM/dc.20180418.36.

Golaz, J.-c., Caldwell, P. M., Roekel, L. P. V., Petersen,
M. R., Tang, Q., Wolfe, J. D., Abeshu, G., Anantharaj, V.,
Asay-davis, X. S., Bader, D. C., Baldwin, S. A., Bisht, G.,
Bogenschutz, P. A., Branstetter, M., Brunke, M. A., Brus,
S. R., Burrows, S. M., Cameron-smith, P. J., Donahue,
A. S., Deakin, M., Easter, R. C., Evans, K. J., Feng, Y.,
Flanner, M., Foucar, J. G., Fyke, J. G., Hunke, E. C.,
Jacob, R. L., Jacobsen, D. W., Jeffery, N., Jones, P. W.,
Keen, N. D., Klein, S. A., Larson, V. E., Leung, L. R.,
Li, H.-y., Lin, W., Lipscomb, W. H., Ma, P.-l., Mccoy,
R. B., Neale, R. B., Price, S. F., Qian, Y., Rasch, P. J.,
Eyre, J. E. J. R., Riley, W. J., Ringler, T. D., Roberts,
A. F., Roesler, E. L., Salinger, A. G., Shaheen, Z., Shi, X.,
Singh, B., Veneziani, M., Wan, H., Wang, H., Wang, S.,
and Williams, D. N. The DOE E3SM Coupled Model Ver-
sion 1 : Overview and Evaluation at Standard Resolution.
7 2019. doi: 10.1029/2018ms001603.

Goosse, H., Kay, J. E., Armour, K. C., Bodas-Salcedo, A.,
Chepfer, H., Docquier, D., et al. Quantifying climate
feedbacks in polar regions. Nature Communications, 9
(1919), 2018.

Hassol, S. Impacts of a warming Arctic-Arctic climate
impact assessment. Cambridge University Press, 2004.

Nichol, J. J., Peterson, M. G., Peterson, K. J., Fricke, G. M.,
and Moses, M. E. Machine learning feature analysis
illuminates disparity between E3SM climate models and
observed climate change. Journal of Computational and
Applied Mathematics, 395:113451, 10 2021. ISSN 0377-
0427. doi: 10.1016/j.cam.2021.113451.

NOAA, OAR, and ESRL-PSD. Ncep-doe reanalysis
2, 2019a. URL https://www.esrl.noaa.gov/
psd/. NCEP Reanalysis 2 data provided by the
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA.

NOAA, OAR, and ESRL-PSD. Noaa extended
reconstructed sea surface temperature, 2019b.
URL https://www.esrl.noaa.gov/psd/.
NOAA ERSST V4 data provided by the
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA.

Nowack, P., Runge, J., Eyring, V., and Haigh, J. D. Causal
networks for climate model evaluation and constrained
projections. Nature Communications 2020 11:1, 11
(1):1—11, 2020. ISSN 2041-1723. doi: 10.1038/
s41467-020-15195-y. URL http://www.nature.
com/articles/s41467-020-15195-y.

Pearl, J. Causal inference in statistics: An overview.
Statistics Surveys, 3(September):96—146, 2009. ISSN
19357516. doi: 10.1214/09-ss057.

Pearl, J. and Mackenzie, D. The Book of Why. Basic Books,
New York, 2018. ISBN 978-0-465-09760-9.

Peng, G., Meier, W. N., Scott, D. J., Savoie, M. H., and
Snow, N. A long-term and reproducible passive mi-
crowave sea ice concentration data record for climate
studies and monitoring. Earth System Science Data, pp.
311—318, 2013. doi: 10.5194/essd-5-311-2013.

Reichenbach, H. The direction of time, volume 65. Univ of
California Press, 1991.

Richter-Menge, J., Druckenmiller, M. L., and M. Jef-
fries, E. Arctic Report Card 2019. Technical re-
port, National Oceanic and Atmospheric Administration,
2019. URL https://www.arctic.noaa.gov/
Report-Card.

Rosenblum, E. and Eisenman, I. Sea ice trends in climate
models only accurate in runs with biased global warming.
Journal of Climate, 30(16):6265—6278, 2017. ISSN
08948755. doi: 10.1175/jcli-d-16-0455.1.

Runge, J. Quantifying information transfer and mediation
along causal pathways in complex systems. Physical
Review E, 92(6):062829, 2015. ISSN 1539-3755. doi:
10.1103/physreve.92.062829.

https://dx.doi.org/10.11578/E3SM/dc.20180418.36
https://dx.doi.org/10.11578/E3SM/dc.20180418.36
https://dx.doi.org/10.11578/E3SM/dc.20180418.36
https://dx.doi.org/10.11578/E3SM/dc.20180418.36
https://www.esrl.noaa.gov/psd/
https://www.esrl.noaa.gov/psd/
https://www.esrl.noaa.gov/psd/
http://www.nature.com/articles/s41467-020-15195-y
http://www.nature.com/articles/s41467-020-15195-y
https://www.arctic.noaa.gov/Report-Card
https://www.arctic.noaa.gov/Report-Card


Learning Why: Data-Driven Causal Evaluations of Climate Models

Runge, J., Petoukhov, V., Donges, J. F., Hlinka, J., Jajcay,
N., Vejmelka, M., Hartman, D., Marwan, N., Paluš, M.,
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