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Abstract
Micro- and nanoscale imaging are important for
characterizing subsurface formations for carbon
sequestration, shale gas recovery, and hydrogen
storage. Common imaging techniques, however,
are often sample-destructive, expensive, require
high levels of expertise, or only acquire planar
data. The resulting image datasets therefore may
not allow for a representative estimation of rock
properties. In this work, we address these chal-
lenges in image-based characterization of porous
media using deep generative models. We present
a machine learning workflow for characterizing
porous media from limited imaging data. We
develop methods for 3D image volume transla-
tion and synthesis from 2D training data, apply
this method to grayscale and multimodal image
datasets of sandstones and shales, and simulate
flow through the generated volumes. Results show
that the proposed image reconstruction and gen-
eration approaches produce realistic pore-scale
3D representations of rock samples using only 2D
training data. The models proposed here expand
our capabilities for characterization of rock sam-
ples and enable new understanding of pore-scale
storage and recovery processes.

1. Introduction
The transition to a sustainable energy future requires a com-
bination of greenhouse gas sequestration, long-term adop-
tion of renewable sources of energy, and near-term fuel
switching to cleaner available energy resources (EIA/ARI,
2013). Three such approaches that could contribute to each
of these goals are, respectively, CO2 sequestration, subsur-
face H2 storage, and natural gas recovery (Zoback & Kohli,
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2019; Hassanpouryouzband et al., 2021). One important
requirement for scalable and sustainable implementation
of these technologies is characterization of porous media
transport properties in order to identify viable candidate
reservoirs.

Image-based characterization in conjunction with digital
rock physics techniques is a versatile approach for under-
standing properties of reservoir rocks at the pore and rock
fabric scales (Ketcham & Carlson, 2001; Vega et al., 2013),
but these methods often require a large number of high-
contrast images. Micro- and nanoscale image datasets often
suffer from data scarcity or destroy the sample during image
acquisition, resulting in datasets that are either too small to
estimate rock properties or preclude further experimenta-
tion. Furthermore, many relevant imaging modalities, such
as electron microscopy, only acquire images in 2D, but 3D
information is needed to characterize fully a rock sample.

Here we outline approaches to overcoming these limitations
of reservoir rock imaging using deep generative models.
We present a deep learning-based image characterization
workflow, shown in Fig. 1, and outline two applications of
this workflow: image modality translation for predicting
image volumes when only 2D training data is available,
and image synthesis for grayscale and multimodal porous
media image volumes from 2D images. In what follows, we
describe the imaging workflow and outline the deep learning
models used for data translation and synthesis for reservoir
rock images.

2. Image Modality Translation
2.1. Multimodal Imaging Overview

Multimodal imaging is an emerging method for geomate-
rial characterization where image data is acquired at the
same scale from two or more image modalities (Aljamaan
et al., 2017). While multimodal imaging is commonplace in
medical imaging (Torrado-Carvajal et al., 2016; Cao et al.,
2018), substantially less prior work has applied multimodal
imaging to the characterization of subsurface samples.

Micro- and nanoimaging modalities often present a trade-
off between resolution and volume representativity. Addi-
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Figure 1. Machine learning image characterization workflow. Images are acquired, curated, and preprocessed into a form suitable for
model training. The deep generative model is trained for applications such as image synthesis, translation, or super-resolution. The model
is deployed to generate or predict images. The images are then postprocessed, often by segmentation into a simulation domain, and finally
the petrophysical properties of the sample such as permeability k or porosity φ are analyzed.

tionally, nanoimaging is often destructive. Thus, methods
with high contrast and resolution often destroy samples
to acquire small image volumes (Sondergeld et al., 2010),
while sample-preserving methods often have comparatively
lower contrast and resolution. Translation between image
domains using multimodal imaging offers the potential to
predict high-resolution images suitable for segmentation
and estimation of transport properties from low-resolution,
non-destructive images.

2.2. Volume Translation Approach

In this application, we seek to predict destructively-acquired
focused ion beam-scanning electron microscopy (FIB-SEM)
images from non-destructive nano-computed tomography
(nano-CT) images (Anderson et al., 2020b). Predicting
FIB-SEM images from nano-CT data is a combination of
image translation and single image super-resolution (SISR),
both of which require synthesis of high-resolution features
and low-density mineral regions. We therefore apply two
generative adversarial network (GAN) models: SR-GAN
(Ledig et al., 2016) and pix2pix (Isola et al., 2017). These
models have shown success in similar imaging tasks and
serve as suitable baselines.

The image acquisition method restricts the data to 2D paired
images, so we are limited to 2D-to-2D image prediction
models. To improve image volume generation with 2D-
to-2D models, we use a Jacobian regularization term in
the model training to encourage sparse z-gradients in the

(a) (b)

Figure 2. Image prediction model. (a) Depiction of nano-CT image
gradients propagating through the generator network to the output
image, (b) SR-GAN model with Jacobian regularization term.

predicted FIB-SEM volume (Fig. 2). Our approach is in-
spired by work on robust learning (Hoffman et al., 2019)
and is comparable to regularizing the model to reduce the
sensitivity of network outputs to inputs.

2.3. Volume Translation Results

Synthesized image volumes using baseline and regularized
SR-GAN models are shown in Fig. 3. These volumes are
synthesized by training 2D-to-2D image generation models,
then independently passing x − y plane image slices of
the nano-CT volume through the generator network. In
the synthesized volumes, we see that the regularized model
produces more continuous image features across slices.
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(a)

(b) (c)

Figure 3. Image volume synthesis results for SR-GAN model. (a)
Input nano-CT volume, (b) Synthesized image volume without
regularization (baseline model), and (c) Synthesized image with
regularization. Lighter shading indicates more dense minerals.

2.4. Flow Evaluation and Visualization

Characterizing flow paths and properties such as perme-
ability is critical for understanding the reactive transport
properties of reservoir rocks. To visualize flow in the rock
volume, we create a simulation domain by thresholding the
lower-density regions of the translated image volume be-
cause flow is known to take place primarily in the kerogen
and lower-density mineral regions.

We simulate flow in the z-direction by using a finite vol-
ume permeability solver in the PerGeos software package.
Methane is introduced from the inlet at 1 MPa, with a 10−2

MPa pressure drop in the z-direction. The resulting pressure

(a) (b)

Figure 4. Flow simulation results for the regularized SR-GAN
model. (a) Pressure field (b) Flow streamlines.

Table 1. Comparison of permeability k, porosity φ, and connected
porosity φconnected predicted by the original and regularized SR-
GAN models.

Model k (d) φ φconnected

Original 2.37× 10−5 20.7% 18.7%
Regularized 3.01× 10−5 18.9% 17.4%

(a)

(b)

Figure 5. Volume generation algorithm. (a) Latent space interpola-
tion. (b) Anchor slices are independently sampled, intermediate
slices computed by taking an affine combination of the latent rep-
resentation of the anchor slices, and the slices stacked to form an
image volume.

field and flow streamlines are shown in Fig. 4a and Fig. 4b.
The results for apparent permeability (measured by Darcy’s
law) and porosity appear in Table 1.

3. Rock Volume Generation
3.1. Volume Synthesis Approach

Deep generative models can also be a valuable tool for over-
coming data scarcity in image-based characterization of
reservoir rocks. In such an approach, a generative model for
geological sample images is trained to sample new images
of a given data volume, then petrophysical properties are
estimated from these samples (Adler et al., 1990). Many gen-
erative models based on GANs or multipoint statistics have
been proposed (Okabe & Blunt, 2004; Mosser et al., 2017),
but these existing models either require 3D training data
for 3D grayscale generation or are limited to binary image
generation from 2D training data. Furthermore, synthesis of
multimodal rock images remains entirely unexplored.

To overcome these obstacles, we propose a method based
on generative flow models (Dinh et al., 2015; Kingma &
Dhariwal, 2018). Generative flow models learn an invertible
mapping z = Gθ(x) between a datapoint x and latent ran-
dom variable z with a known distribution. This allows for
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Figure 6. Bentheimer sandstone images. The synthesized images
form a connected sequence of 14 images. The images are seg-
mented into pore and grain phase to compute morphological de-
scriptors and flow properties.

sampling new datapoints by feeding new z vectors into the
reversed function G−1(·). Flow models have been shown
to have a latent space interpolation property where linear
interpolation in latent space yields semantic interpolation in
image space (Fig. 5a). We propose to use this property to
generate sequences of connected porous media images by
sampling latent vectors for “anchor slices” and generating
the intermediate images by taking an affine combination of
the anchor slice latent representations, as shown in Fig. 5b.

3.2. Image Synthesis Results

Figure 6 shows training data and synthesized images gen-
erated with our model for a Bentheimer sandstone sample.
Visually, the synthetic images closely resemble the train-
ing images. The generated Bentheimer sandstone volumes
also closely match the ground truth data in terms of 3D
Minkowski functionals, as shown in Fig. 7. Minkowski
functionals are morphological descriptors for a solid body
that correlate with properties of porous media, and are
therefore important to replicate in synthesized rock sam-
ples. The Glow model-based generation algorithm obtains
close matches for the porosity, surface area, and Euler char-
acteristic but differs for the mean breadth. This is likely an
artifact from the image generation process and is explained
in further detail in (Guan et al., 2020).

Our volume synthesis approach is also uniquely capable
of multimodal image generation from 2D image data (An-
derson et al., 2020a), as shown in Fig. 8. These results
demonstrate the applicability of this algorithm for genera-
tion of a wide class of porous media volumes from sparse
or 2D training data.

Figure 7. Minkowski functionals for synthesized Bentheimer sand-
stone images. The synthetic rock volumes have distributions for
the porosity, surface area, and Euler characteristic similar to those
found for the original images, while the mean breadth differs for
the synthetic images.

(a) (b)

Figure 8. Multimodal image generation: (a) Synthesized TXM
image volume, (b) Synthesized FIB-SEM volume.
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(a) (b)

Figure 9. Comparison of flow and morphological properties of
Bentheimer sandstone values. (a) Distributions of apparent perme-
ability values computed with a Navier-Stokes solver. (b) Pore size
distributions for the real and synthetic Bentheimer volumes.

3.3. Evaluation of Petrophysical Properties

We also compute petrophysical properties of the predicted
image volumes to evaluate the accuracy of the flow prop-
erties for the synthesized images. Figure 9a compares the
single-phase permeability values obtained from a Navier-
Stokes simulation and Fig. 9b compares the pore size distri-
bution for the Bentheimer sandstone dataset. The original
and synthetic volumes have a similar distribution of perme-
ability values and pore sizes, shown respectively as the box
plots and pore radius curves, showing that this approach to
porous media synthesis is able to create rock sample images
with realistic petrophysical properties.

4. Discussion and Conclusion
The image translation results show that the Jacobian regu-
larization significantly improves the quality of the predicted
image volume when only 2D training data is available. The
cross-sections in the regularized volumes qualitatively re-
semble the image generation planes. We assume that at
this scale, rock image features should be approximately
isotropic, so the x− z and y− z plane slices resembling the
x− y plane slices show the effectiveness of the model. The
apparent permeability values, while greater than what would
be expected for a shale sample at the rock fabric scale, are
still within the order of magnitude expected.

The image synthesis results similarly demonstrate the ability
of deep generative models to create realistic image volumes.
The visual similarity, permeability, and pore size distribu-
tion results show that that generated rock volumes are ac-
curate in terms of structural and petrophysical properties.
The flow model-based algorithm is also able to generalize
to 3D grayscale and multimodal image generation when
only 2D data is available, enabling synthesis of data from a
much wider range of resolution scales, modalities, and rock
samples.

Overall, this work shows the ability of deep generative mod-
els to improve characterization of reservoir rocks from lim-
ited, non-destructive, or planar image data. By enabling new
characterization approaches, this work allows for better un-
derstanding of flow and reactivity in subsurface formations
relevant to natural gas recovery and CO2 and H2 storage.
In turn, we hope that this advancement helps bring us one
step closer to reduced-carbon and carbon negative energy
processes necessary for a sustainable future.

Software and Data
Code for this project is available at https://
github.com/supri-a/TXM2SEM and https://
github.com/supri-a/rockflow. Our implemen-
tation is based on the frameworks provided by Isola et al.
(2017), Zhu et al. (2017), and van Amersfoort (2019).
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We thank Dassault Systèmes for providing computational
resources for the LBM calculations. We thank the Stanford
Center for Computational Earth & Environmental Sciences
(CEES) for providing computational resources for the NS
calculations.

References
Adler, P., Jacquin, C., and Quiblier, J. Flow in simulated

porous media. International Journal of Multiphase
Flow, 16(4):691 – 712, 1990. ISSN 0301-9322. doi:
https://doi.org/10.1016/0301-9322(90)90025-E. URL
http://www.sciencedirect.com/science/
article/pii/030193229090025E.

Aljamaan, H., Ross, C. M., and Kovscek, A. R. Multiscale
imaging of gas storage in shales. SPE Journal, 22(06):

https://github.com/supri-a/TXM2SEM
https://github.com/supri-a/TXM2SEM
https://github.com/supri-a/rockflow
https://github.com/supri-a/rockflow
http://www.sciencedirect.com/science/article/pii/030193229090025E
http://www.sciencedirect.com/science/article/pii/030193229090025E


Generative Modeling of Reservoir Rock Images

1–760, 2017.

Anderson, T. I., Guan, K. M., Vega, B., Aryana, S. A.,
and Kovscek, A. R. Rockflow: Fast generation of syn-
thetic source rock images using generative flow models.
Energies, 13(24), 2020a. ISSN 1996-1073. doi: 10.
3390/en13246571. URL https://www.mdpi.com/
1996-1073/13/24/6571.

Anderson, T. I., Vega, B., and Kovscek, A. R. Multimodal
imaging and machine learning to enhance microscope
images of shale. Computers and Geosciences, 145(June):
104593, 2020b. ISSN 0098-3004. doi: 10.1016/j.cageo.
2020.104593. URL https://doi.org/10.1016/
j.cageo.2020.104593.

Cao, X., Yang, J., Wang, L., Xue, Z., Wang, Q., and Shen,
D. Deep learning based inter-modality image registration
supervised by intra-modality similarity. In International
Workshop on Machine Learning in Medical Imaging, pp.
55–63. Springer, 2018.

Dinh, L., Krueger, D., and Bengio, Y. NICE: Non-linear
independent components estimation. 3rd International
Conference on Learning Representations, ICLR 2015 -
Workshop Track Proceedings, 1(2):1–13, 2015.

EIA/ARI. Eia/ari world shale gas and shale oil resource
assessment. 2013. URL https://www.eia.
gov/analysis/studies/worldshalegas/
archive/2013/pdf/fullreport_2013.pdf.

Guan, K., Anderson, T., Creux, P., and Kovscek, A. Recon-
structing porous media using generative flow networks.
Computers & Geosciences, in review, 2020.

Hassanpouryouzband, A., Joonaki, E., Edlmann, K., and
Haszeldine, R. S. Offshore geological storage of hy-
drogen: Is this our best option to achieve net-zero?
ACS Energy Letters, pp. 2181–2186, May 2021. doi:
10.1021/acsenergylett.1c00845. URL https://doi.
org/10.1021/acsenergylett.1c00845.

Hoffman, J., Roberts, D. A., and Yaida, S. Robust learning
with jacobian regularization, 2019.

Isola, P., Zhu, J. Y., Zhou, T., and Efros, A. A. Image-to-
image translation with conditional adversarial networks.
Proceedings - 30th IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, 2017-Janua:5967–
5976, 2017. doi: 10.1109/CVPR.2017.632.

Ketcham, R. A. and Carlson, W. D. Acquisition, optimiza-
tion and interpretation of x-ray computed tomographic
imagery: Applications to the geosciences. Computers
and Geosciences, 27(4):381–400, 2001. ISSN 00983004.
doi: 10.1016/S0098-3004(00)00116-3.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow with
invertible 1×1 convolutions. Advances in Neural Infor-
mation Processing Systems, 2018-Decem:10215–10224,
2018. ISSN 10495258.

Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham,
A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang,
Z., and Shi, W. Photo-Realistic Single Image Super-
Resolution Using a Generative Adversarial Network.
2016. ISSN 0018-5043. doi: 10.1109/CVPR.2017.19.

Mosser, L., Dubrule, O., and Blunt, M. J. Reconstruction of
three-dimensional porous media using generative adver-
sarial neural networks. Physical Review E, 96(4), 2017.
ISSN 24700053. doi: 10.1103/PhysRevE.96.043309.

Okabe, H. and Blunt, M. J. Prediction of permeability for
porous media reconstructed using multiple-point statistics.
Physical Review E - Statistical Physics, Plasmas, Flu-
ids, and Related Interdisciplinary Topics, 70(6):10, 2004.
ISSN 1063651X. doi: 10.1103/PhysRevE.70.066135.

Sondergeld, C. H., Ambrose, R. J., Rai, C. S., and Mon-
crieff, J. Micro-structural studies of gas shales. In SPE
unconventional gas conference. Society of Petroleum En-
gineers, 2010.

Torrado-Carvajal, A., Herraiz, J. L., Alcain, E., Mon-
temayor, A. S., Garcia-Canamaque, L., Hernandez-
Tamames, J. A., Rozenholc, Y., and Malpica, N. Fast
Patch-Based Pseudo-CT Synthesis from T1-Weighted
MR Images for PET/MR Attenuation Correction in Brain
Studies. Journal of Nuclear Medicine, 57(1):136–143,
2016. ISSN 0161-5505. doi: 10.2967/jnumed.115.
156299.

van Amersfoort, J. Glow-PyTorch.
https://github.com/y0ast/Glow-PyTorch, 2019.

Vega, B., Andrews, J. C., Liu, Y., Gelb, J., and Kovscek,
A. Nanoscale visualization of gas shale pore and tex-
tural features. In Unconventional resources technology
conference, pp. 1603–1613. Society of Exploration Geo-
physicists, American Association of Petroleum, 2013.

Zhu, J. Y., Park, T., Isola, P., and Efros, A. A. Unpaired
Image-to-Image Translation Using Cycle-Consistent Ad-
versarial Networks. Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2017-Octob:2242–
2251, 2017. ISSN 15505499. doi: 10.1109/ICCV.2017.
244.

Zoback, M. D. and Kohli, A. H. Unconventional reservoir
geomechanics. Cambridge University Press, 2019.

https://www.mdpi.com/1996-1073/13/24/6571
https://www.mdpi.com/1996-1073/13/24/6571
https://doi.org/10.1016/j.cageo.2020.104593
https://doi.org/10.1016/j.cageo.2020.104593
https://www.eia.gov/analysis/studies/worldshalegas/archive/2013/pdf/fullreport_2013.pdf
https://www.eia.gov/analysis/studies/worldshalegas/archive/2013/pdf/fullreport_2013.pdf
https://www.eia.gov/analysis/studies/worldshalegas/archive/2013/pdf/fullreport_2013.pdf
https://doi.org/10.1021/acsenergylett.1c00845
https://doi.org/10.1021/acsenergylett.1c00845

