
MethaNet - an AI-driven approach to quantifying methane
point-source emission from high-resolution 2-D plume imagery

Siraput Jongaramrungruang 1 Christian Frankenberg 1 2 Andrew K. Thorpe 2 Georgios Matheou 3

Abstract

Methane (CH4) is one of the most powerful an-
thropogenic greenhouse gases with a significant
impact on global warming trajectory and tropo-
spheric air quality. Quantifying an emission rate
of observed CH4 plumes from aerial or satellite
images is a critical step for understanding the local
distributions and subsequently prioritizing mitiga-
tion target sites. However, there exists no method
that can reliably predict emission rates from de-
tected plumes in real-time without ancillary data.
Here, we trained a convolutional neural network
model, called MethaNet, to predict methane point-
source emission directly from high-resolution 2-
D plume images without relying on other local
measurements such as background wind speeds.
Our results support the basis for the applicabil-
ity of using deep learning techniques to quantify
CH4 point sources in an automated manner over
large geographical areas. MethaNet opens the
way for real-time monitoring systems, not only
for present and future airborne field campaigns
but also for upcoming space-based observations
in this decade.

1. Introduction
Methane is the second strongest anthropogenic greenhouse
gases overall in the Earth climate system. Due to its much
shorter lifetime compared to that of CO2, methane emission
could be a target for emission reduction efforts to help mit-
igate climate impacts on a significantly shorter timescale
(Montzka et al., 2011; Prather et al., 2012; Shindell et al.,
2012). In fact, the 2018 NASA Decadal Survey has indi-
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cated the identification and understanding of methane emis-
sions as one of the top priorities in the efforts to improve the
future climate projection, and help lead the way in emission
reduction (National Academies of Sciences, Engineering &
Medicine, 2018).

Despite relatively well-constrained total global emissions,
regional and local emission estimates have been challenging
due to uncertainties in the process understanding and lack
of sufficiently fine resolution observations that can also
simultaneously cover large geographical areas. This hinders
the ability to conduct mitigation efforts in the most effective
manner since policy and remedy actions often take place
at regional and local scales. Improved measurements of
localized CH4 point sources (e.g. 10 - 100 m scale) are
integral to this effort.

One potential to fill this gap is remote-sensing imaging ab-
sorption spectrometry. This technique has opened the way
for quantitative CH4 measurements at sufficiently high res-
olution needed to differentiate various local sources over
large areas at regional scale (Duren et al., 2019; Franken-
berg et al., 2016). Using absorption features of CH4 in
the short-wave infrared around 2.3 µm, column integrated
CH4 concentration can be retrieved at a spatial resolution as
fine as 1 m, allowing for the detection of CH4 point sources
from airborne spectrometers such as the next-generation Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS-NG)
(Thorpe et al., 2017). Studies have utilized this technique
for several field campaigns in the Western U.S. where more
than 500 strong point sources have been detected (Duren
et al., 2019; Frankenberg et al., 2016). Figure 1 shows
examples of representative methane plumes from different
sectors. Sources of various emission rates observed under
varying wind speeds would lead to a diverse set of plume
spatial distributions. Despite the progress in the detection
algorithm of methane plumes, high uncertainties still exist
in converting the observed concentration fields to source
flux rates.

Many flux inversion methods have been proposed such as
the Gaussian plume inversion (Bovensmann et al., 2010;
Krings et al., 2013), source pixel estimate (Jacob et al.,
2016), cross-sectional flux estimate (Cambaliza et al., 2015;
2014; Conley et al., 2016), and residence time of methane
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Figure 1. A map showing detected methane sources from the Cali-
fornia Methane Source Finder project. Background image shows
AVIRIS-NG flight lines conducted in 2016 and 2017 (white stripes)
and locations of detected CH4 sources (purple circles). The in-
set images show examples of methane plume enhancement from
AVIRIS-NG observations over (a) a landfill, (b) diary manure area,
(c) an oil and gas facility, and (d) a natural gas storage field.

plume enhancement (Duren et al., 2019; Varon et al., 2018).
All of these techniques, however, require the knowledge of
local wind speed. This hinders fast and accurate flux inver-
sions since in situ wind measurements cannot be planned
when the location of the plume is not known a priori. Due to
these limitations, accurate and fast flux inversions of point
sources have been challenging. Jongaramrungruang et al.
(2019) tackled this challenge by utilizing plume morphology
to constrain corresponding wind speed and thus flux rate. It
provides evidence that the morphology of methane plumes,
as observed from remote sensing images, contains useful
information about the background wind speed during the
flight overpass, which, in turn, is a critical component of
predicting accurate flux estimates. In that work, a plume
angular width is constructed as a simple metric to represent
the geometry of observed methane plumes. Essentially, the
2D pattern of the plume is simply reduced into one dimen-
sion, which was an ad hoc choice. However, the full spatial
structure of the plume morphology can potentially be uti-
lized such that emission rates are predicted at even higher
accuracy, as well as in a more automated and objective
manner.

Modern machine learning techniques are designed for prob-
lems as this task. Convolutional Neural Network (CNN) is
a model architecture that has shown tremendous success in
image recognition tasks (He et al., 2016; Krizhevsky et al.,
2012; Simonyan & Zisserman, 2015; Szegedy et al., 2014).
It has been shown to be capable of learning relevant spa-
tial patterns from an image with location invariant features

similar to how a human brain understands an image. Here
in this work, we build a customized CNN model and apply
it to a large training dataset derived from Large Eddy Sim-
ulation (LES) (Matheou et al., 2014) output and realistic
background noise over agricultural, desert and urban envi-
ronments. We train our model, named MethaNet, to predict
flux rates directly from 2D methane plume images. To our
knowledge, this is the first time that CNN has been used for
a regression task to quantify methane plume emission from
2D high-resolution imagery.

Section 2 illustrates the method on preparing the dataset,
and the details on MethaNet CNN architecture. Model
performance and error analyses are provided in Section 3,
followed by concluding remarks in the final section.

2. Methodology
2.1. Data

To train a model capable of quantifying an emission rate
from a given 2D image, a realistic modelling of CH4 plumes
is a prerequisite, as the actual plume observations with
known flux rates are extremely limited. The training data is
a set of simulated plume images, each with one channel rep-
resenting CH4 concentration and each has a source emission
rate as a label. The LES is used to generate the time-resolved
three-dimensional CH4 distribution in the boundary layer,
over a range of 1-10 m/s wind speeds. This enables a re-
alistic simulation of how methane concentrations from a
point source evolve in space, given various background
wind speeds and source flux rates. The full description of
the LES model setup can be found in Jongaramrungruang
et al. (2019).

This allows us to efficiently create synthetic plumes originat-
ing from sources spanning orders of magnitudes in flux rates.
In this work, we focus on plume emission rates between
0 and 2000 kg/hr which is the range in which the major-
ity of typical methane point sources were observed (Duren
et al., 2019). Each of these 2D images is then augmented
by continuous random rotation between -170° to 170° and
translation between -30 to +30 pixels, to generate a diverse
set of possible plume orientations and center locations. Ad-
ditionally, superposed on each an image is a noise matrix
with the same size as the plume image. The illustration of
this synthetic plume generation is shown in Figure 2. The
noise matrix is taken from retrieval background variations
from actual AVIRIS-NG scenes in the absence of plumes.
In our work, we obtained scenes over a variety of surfaces,
including urban, desert, and agricultural areas.

Building a successful neural network model generally re-
quires large data samples. These data are separated into
training, validation and test sets that share a similar distribu-
tion but are distinct from one another. Our training data is
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Figure 2. An example of a plume image from a simulated plume superposed on a realistic retrieval noise background based on an
AVIRIS-NG observation over agricultural area.

a set images of plumes of different sizes and shapes under
various wind speeds and background noise. In our study,
we assign images from independent LES runs for training,
validation and test sets ( 300K, 10K, and 3K samples respec-
tively). We also assign background noise scenes into three
buckets, each to be used exclusively in each of the three
sets to ensure no data contamination among them. After
MethaNet is trained, validated, and tested in the simulation
world, the best model is also applied to make a prediction
on a few available actual plume observations from a ground
controlled-release experiment.

2.2. Model

Machine learning methods have been used extensively in
many fields to predictive problems. One particular model in
machine learning that has found a great success in computer
vision tasks is CNN (He et al., 2016; Krizhevsky et al.,
2012; Simonyan & Zisserman, 2015; Szegedy et al., 2014).
It has been the primary building blocks for tasks such as
face recognition, image classification, autonomous driving.
Because of its versatility, recently it has been adopted in
tackling environmental science-related problems such as
gas leak classification and wild fire classification based on
remote-sensing images (Kumar et al., 2020; Pan et al., 2020;
Wang et al., 2020). However, most of the CNN applications
in environmental science has been primarily limited to a
classification problem. Here, for the first time, we applied
CNN to predict methane quantification directly from a 2D
image as a regression task. We develop a customized CNN
model, named MethaNet, based on a basic building block
where a convolutional layer with a non-linear activation
function is followed by a max pooling layer, then combining
with a few fully-connected layers before the last output layer
that determines the flux rate a scalar value.

In our case, an image dimension of 300*300 pixels is suit-
able, as it covers a range of 1.5*1.5 km2, which can fully
capture typical plume dimensions of less than 1 km. The
input image has only 1 channel representing a value of re-
trieved CH4 enhancement (this value is not bounded by 255

as typical in RGB). The architecture consists of a series
of convolutional layers each with different numbers of fil-
ters and sizes, and each has a Rectified Linear Unit (ReLu)
activation function. Max pooling layers are also applied
after certain convolutional layers, and a dropout layer is in-
cluded as a regularization to reduce overfitting. After these
combined layers, the output is then flattened and passed to
fully-connected layers with 64 and 32 neurons with ReLU
activations. Finally, the output layer contains one neuron
with a scaler output for a regression task to quantify methane
emission rate from the input image.

3. Results and Analysis
In this section, we show the performance of MethaNet on
predicting methane emission rates. The comparison between
the true and predicted fluxes from the test set are shown in
Figure 3. A key metric that is widely used to characterize
the effectiveness of plume emission estimates in the field is
the mean absolute percentage error.

Generally, MethaNet predictions align well with the true
values as indicated by the concentration of points close to
the 1:1 line. For plumes with emission rates above 40 kg/hr,
our model can predict with the mean absolute percentage
error of under 17%.

We see some outliers for some plumes at very low fluxes,
especially under 30 kg/hr. Inspection on the data points
with low fluxes and high prediction error reveals that these
scenes have bright surface features (high correlated noise
levels), which interfere with how the network perceives and
predict the actual fluxes from the images. For these scenes,
it is hard for even human eyes to distinguish plumes from
the noise. Thus, it is hard for the model to perform well
on scenes in such an extreme case. Predictions for plumes
under high background wind speeds (8-10 m/s) also tend
to underestimate the true flux rates. This could be because
plumes have more elongated structures under such high
wind speeds; these structures were seen less often in the
training data compared to typical more-rounded structures



MethaNet - an AI-driven approach to quantifying methane emission

0 400 800 1200 1600 2000
True flux (kg/hr)

0

400

800

1200

1600

2000
P

re
di

ct
ed

 fl
ux

 (k
g/

hr
)

Figure 3. A plot showing a comparison between true fluxes and
predicted fluxes by MethaNet trained from all LES runs with
realistic background noise to predict unseen plumes in test set. A
solid line shows a 1:1 relationship.

Figure 4. Controlled release experiment conducted at Victorville,
CA. The scenes represent 3 overpasses with a controlled flux rate
of 39 kg/hr. The enhancement in color is used for MethaNet input;
the background RGB is shown only for visual reference.

under lower wind speed regimes. Overall, it is evident that
our model can predict the emission rate of methane plumes
accurately without the need for wind speed information.
Over the same range of flux rates, this level of accuracy
surpasses other previous methods, which even require wind
speeds to estimate emission rates. This is a significant part
in deploying the model for a real-time application during
field campaigns and future monitoring systems. This level
of performance at a mean absolute percentage error of 17%
is a state-of-the-art achievement for a model that does not
even rely on wind speed information.

To further demonstrate the validity of this method, we apply
our model to actual 2D scenes of a methane plume from a
controlled-release experiment from a natural gas pipeline
located at Victorville, CA (34.8, -117.3), on 15-17 June,
2017, with a flux release of 39 ± 5 kg/hr. The three snap-
shots of the same plume from this source is shown in Figure
4. Based on each snapshot, we feed the 2D image into our
trained model and directly obtain a prediction of emission
rate of the source. The predicted flux rates are 33, 26, and
32 kg/hr. The mean and standard deviation is 31 and 3, re-
spectively. This is consistent with the actual rate within one
standard deviation. The mean prediction is approximately
20% deviated from the true value.

4. Conclusion
In this study, we demonstrated a novel approach using deep
learning to quantify methane gas emission based on high-
resolution airborne imagery. Our method demonstrates that
an accurate estimate of methane emission rates can be ob-
tained directly from CH4 enhancement image without the
need of simultaneous wind speed measurement. We build a
Convolutional Neural Network model to learn the mapping
between 2D plume images and theirs corresponding source
emission rates under various wind speed conditions. The
training data are derived from realistic plume simulation
using LES and realistic retrieval noise from AVIRIS-NG
field observations. Our simulated CH4 images represent
a diverse set of realistic plumes of various emission rates
between 0-2000 kg/hr in different landscape ranging from
urban, desert to agriculture areas. Our error analysis based
on the model prediction of a hold-out set of unseen scenes
shows an error of around 17% on average. This level of
error is a significant improvement from other pre-existing
approaches, while it completely removes the dependence on
meteorological wind speed data which might not be reliable
or available at high spatial resolution everywhere on the
globe. An independent test on a controlled release experi-
ment data over Victorville, CA, also validates a consistent
prediction performance for MethaNet in real observations.
We have shown that this model can be applied to quantifying
methane point-source emission in a quick and automated
manner based directly on plume images alone. While the
range of methane emissions prescribed in this study was be-
tween 0 and 2000 kg/hr, we believe that the same approach
can be applied to plumes with even higher fluxes as the
plume enhancement in such case will be even more promi-
nent compared to the surrounding noise background. With
the level of performance of MethaNet, we believe it could
be applied to recent large-scale flight campaigns to improve
previous emission rate estimates. This also has immediate
implications for future aerial campaigns and space-baed ob-
servations from anticipated satellites that will be launched
in this decade.
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