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Abstract

A sustainable alternative to sourcing many ma-
terials humans need is metabolic engineering: a
field that aims to engineer microorganisms into
biological factories that convert renewable feed-
stocks into valuable biomolecules (i.e., jet fuel,
medicine). In order for metabolic engineering
to be cost-competitive, microorganism factories
must be genetically optimized using predictable
DNA sequence tools; however, for many organ-
isms, the exact DNA sequence signals defining
their genetic control systems are poorly under-
stood. To better decipher these DNA signals, we
propose a multi-task learning approach that uses
deep learning and feature attribution methods to
identify DNA sequence signals that control gene
expression in the methanotroph M. buryatense.
This bacterium consumes methane, a potent green-
house gas. If successful, this work would enhance
our ability to build gene expression tools to more
effectively engineer M. buryatense into an effi-
cient biomolecule factory that can divert methane
pollution into valuable, everyday materials.

1. Introduction

Globally, human societies are consuming finite resources
at unsustainable rates. Transitioning away from our depen-
dencies on non-renewable resources and towards a cycli-
cal, sustainable use of natural products is critical for re-
ducing greenhouse gas emissions, preserving Earth’s most
threatened ecosystems, and securing longer term economic
stability. Metabolic engineering is a growing field that
aims to address sustainability concerns by engineering mi-
croorganisms into tiny biological factories that can convert
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Figure 1. Metabolic engineering: a process to engineer microor-
ganisms into biological factories that convert renewable inputs into
more-sustainably sourced products.

renewable feedstocks (e.g., sugar cane) or waste streams
(e.g., methane emissions, industrial waste-gas) into essen-
tial products like biofuels, medicines, and a wide range of
biologically-derived materials (31, 28, 12). In order for mi-
crobial metabolic engineering to succeed as an alternative
platform for producing valuable molecules that are other-
wise sourced unsustainably, the process must be economi-
cally viable. From a biological engineering standpoint, this
means that the microbial factories must be genetically op-
timized to produce the target molecules efficiently and at
high yields (44).

Increasingly, automation and predictive modeling have
been essential for accelerating the ability of metabolic en-
gineering platforms to compete with industries rooted in
petroleum, fossil fuels, or other unsustainable practices
(27, 24). Many facets of metabolic engineering pipelines
have improved with machine learning, such as metabolic
network prediction (14, 30), bioreactor and fermentation
process optimization (34, 6), and protein engineering (3, 19).
Organism engineering — in particular reliably predicting bi-
ological outcomes from newly installed DNA parts — is
another area of metabolic engineering that could benefit
from machine learning. Organisms execute genetic pro-
grams using complex systems of signals that are encoded as
DNA sequence patterns. The combination and orientation
of these DNA patterns intricately regulate gene expression,
or the timing and strength at which each gene turns on or off.
While various approaches are being pursued (13, 46, 10),
the precise rules of these “genetic grammars” are still poorly
understood and the task of predicting gene expression output
in engineered microorganisms remains difficult.

Deep learning methods, such as convolutional neural net-
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works (CNNs) and recurrent neural networks (RNNs), are
well-suited to DNA sequence pattern discovery tasks: they
are particularly adept at learning important features without
prior knowledge, finding relevant patterns within larger con-
texts, and considering non-linear or longer-term dependen-
cies between learned features (22, 16). We propose using
a multi-task deep learning approach to elucidate genetic
grammar rules in microorganisms with potential to serve as
metabolic engineering platforms. Specifically, by 1) using
deep learning model architectures to predict gene expression
strength across a variety of growth conditions directly from
DNA sequences and 2) applying feature attribution methods
to identify meaningful patterns within the DNA inputs, we
can use these discovered patterns to develop genetic tools re-
quired to optimize microbes to produce valuable molecules
efficiently, sustainably, and at large scales.

2. Background
2.1. Sustainable Biomolecule Production

Humans rely on many biologically-derived molecules: fuels
for transportation, fibers in clothing, medicinal molecules
from plants. Molecules naturally found in organisms are
typically produced via some metabolic pathway, or a se-
ries of chemical conversions carried out by enzymes that
can transform inputs, like sugars, into other molecules
organisms need to survive. Organisms store instructions
for building metabolic pathway enzymes in DNA. Since
DNA is a common language between all organisms, genetic
instructions are potentially transferable between species.
Metabolic engineers leverage this genetic transferability to
rewire metabolic pathways in microorganisms, like bacte-
ria, to produce a range of valuable molecules that other
organisms, like plants, make naturally (31, 28, 12).

One of the earliest successful examples was an effort to re-
engineer baker’s yeast to convert sugarcane into artemisinin
(35), akey component in malaria treatments originally found
in the sweet wormwood plant. Since then, many other
molecules, such as farnesene (26) (a jet fuel) and spider-
silk (42), have similarly been produced in microbes. These
examples demonstrate the ability of metabolic engineering
strategies to support sustainable biomolecule production, but
microbes’ production efficiency must continue to improve
in order to be economically competitive.

2.2. Genetic Challenges in Metabolic Engineering

A major challenge of microbial optimization is that each
gene in a newly installed metabolic pathway must have
finely-tuned expression. Organisms have evolved intricate
systems of controls to regulate gene expression, namely
genetic signals encoded as DNA sequence patterns. These
sequence patterns, or motifs, exist throughout the genome

and are often short and can be arranged in many different
combinations and orientations (7, 21, 8). Cells understand
these motif patterns as a “genetic grammar’ and use them
to perform logical operations to determine which genes
need to be activated or repressed in response to the current
environmental conditions. Promoters are regions of DNA
that contain many of the sequence motifs involved in gene
regulation. Therefore promoter regions are key elements to
identify and decode, both for better elucidating a microbe’s
basic biology as well as for building out a genetic toolkit
with which to more precisely and effectively engineer the
microbe for biomolecule production (4).

While many regulatory signals, such as promoters, have
been identified and studied in popular microorganisms like
baker’s yeast and E. coli, there are countless other micro-
bial species that have not yet had the same degree of ge-
netic characterization. Leveraging the diversity of microbes
across the tree of life, many of which could serve as ideal
platforms for metabolic engineering, would broaden the
opportunities for this renewable production strategy to suc-
ceed. Unfortunately, every organism has evolved a distinct
genetic grammar and though some may be similar, promoter
tools developed for one organism are not always compatible
across species (32, 43). If we could accelerate our abil-
ity to develop the necessary tools with which to engineer
less-studied microorganisms, it would greatly enhance the
potential for metabolic engineering to become an economi-
cally viable molecule production strategy by reducing the
time and investment needed to rapidly explore new potential
host organisms.

2.3. Methane Emissions Mitigation

One promising microbial host is the methanotroph Methylo-
tuvimicrobium buryatense SGB1, a bacterium that can use
one-carbon compounds, such as methane and methanol, to
grow and survive (18, 11). Methane is emitted from both
natural (e.g., wetlands) and anthropogenic sources (e.g.,
landfills, coal mines, agriculture) and is the second greatest
contributor to climate change behind carbon dioxide (33).
Though less abundant than carbon dioxide, methane is 20-
30x more potent as a greenhouse gas and thus addressing
methane emissions is a critical avenue for mitigating climate
impacts (38).

Methanotrophs like M. buryatense play important roles in
consuming methane and cycling carbon back into the envi-
ronment (11). Methane concentrations tend to be enriched
in the atmosphere surrounding industrial sites that emit the
gas as a byproduct and thus there is an opportunity to mit-
igate emissions at these types of pollution sources using
bioreactors designed for growing methanotrophs (23). In
particular, if an efficient metabolic engineering system could
be deployed with a methane-consuming microbe, it could



A multi-task learning approach to enhance sustainable biomolecule production in engineered microorganisms

RNA-seq ~100 samples
(12 experimental _(l LLLL l\_:
conditions) —————» ] s
~4,000[] TPM 1

genes || data |-

A o

[T

Gene'A: CGTTACCAGGATGATCGATGC...... 203.6
Gene B: TATAAACGGGCAAGCTTACCA...... 52.9
Gene C: TTGCAAGCGTACATCCTACAA...... 113.8

A
\_ ML Models:
One-hot k-mer reg.
encoded CNN

DNA

Feature
Attribution

prediction

(12 experimental conditions)

Figure 2. Multi-task learning approach. RNA-seq data measuring
transcripts per million (TPM) were collected for ~4,000 genes in
~100 samples. Each sample belongs to one of 12 experimental
growth conditions. One-hot encoded upstream DNA sequences
will be fed into varying model architectures (linear regression,
CNN, LSTM) to predict genes’ TPM output in a multi-task frame-
work. Feature attribution methods will be applied to identify influ-
ential sequence motifs.

offer an attractive outlet for methane emissions: a feedstock
for biological factories. Not only would this provide an-
other paradigm in which to harness biology for sustainable
molecule production, but it would help divert a harmful
waste stream out of the atmosphere and sequester it in use-
ful materials. Continued innovations in methane capture and
bioreactor technologies are required in order to scale up this
intervention, however the ability to develop an engineered
methanotroph with optimized metabolism is a crucial step
and the primary focus of this proposal.

3. Technical Approach
3.1. Related Work

To develop more sophisticated genetic tools for efficiently
engineering M. buryatense, we aim to use a deep learning
approach to learn DNA sequence patterns from its promoter
regions. Deep learning has previously been applied to DNA
sequence inputs, for example to predict the presence of
DNA regulatory sites (2, 45, 20), estimate strength from
a sequence (13, 36, 5), or classify sequences as promoters
(40, 29). However most of these approaches tend to focus
on model organisms, like human, mouse, yeast, or E. coli,

with vast amounts of experimental data. M. buryatense,
and many other non-model bacteria, do not have databases
(37, 15) of such extensively curated knowledge. Deep learn-
ing approaches that can leverage simple, routine-to-collect
datasets to learn relevant signalling patterns in unusual or-
ganisms would enable more rapid development of genetic
tools for diverse species.

RNA-sequencing is a common experimental technique used
to measure transcription, an important aspect of gene expres-
sion strength (41). Briefly, it takes a snapshot of the RNA
transcript levels of every gene in the cell, revealing which
genes the cell has currently received signals to activate and
their approximate expression strength. RNA transcript abun-
dances change in response to these signals, producing a
valuable readout with which to interrogate signalling pat-
terns in promoter regions with predictive models (1, 46).

3.2. Dataset and Multi-task Learning

We have compiled an RNA-seq dataset recording the expres-
sion strength in transcripts per million (TPM) of each of
the ~4,000 genes in the M. buryatense genome. Each gene
was repeatedly measured in ~100 experimental samples.
Each sample is labeled with one of 12 possible experimental
growth conditions (e.g., “ideal conditions”, “methane lim-
ited”, “no copper”). Additionally, from the M. buryatense
gene annotation file (17), we have extracted the upstream
DNA sequences of each gene, a region likely to contain

promoters and other regulatory signals.

Using one-hot encoded DNA sequences as input, we will
apply a suite of machine learning architectures to predict
the TPM levels for each gene in each condition. Specifi-
cally, we plan to compare simpler models, such as linear
regression on k-mer counts, to more complex deep learning
architectures, such as CNNs and LSTMs, and evaluate re-
gression losses using the Mean Squared Error. Given that
some experimental growth conditions are more similar than
others, we will use a multi-task framework to simultane-
ously estimate TPM in each experimental growth condition,
allowing the model to share learned features that are relevant
across multiple prediction tasks. Furthermore, we intend
to apply feature attribution methods, such as DeepLift (39),
DeepShap (9), and Scrambler Networks (25) to identify
meaningful subsequences within the inputs that influence
expression in specific conditions. These subsequences are
likely to represent regulatory motifs that can form the basis
for new genetic engineering tools for this organism.

While our RNA-seq dataset is unique in its diversity of
experimental conditions for such an unusual organism, M.
buryatense’s genome of 4,000 genes is small relative to the
wider set of microbe gene expression data available. We
anticipate that using transfer learning techniques to pre-train
models using data from related tasks or related organisms
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will be quite valuable, enabling us to learn more universally
conserved signalling patterns from a larger dataset before
fine-tuning models to learn the specifics of M. buryatense’s
genetic grammar.

4. Conclusions and Impacts

If successful, this work would enable us to 1) predict the
influence of new DNA sequences on M. buryatense gene
expression in a range of conditions, estimating their effec-
tiveness as candidate promoters, 2) gain biological insights
about specific sequence motifs that emerge from model
features flagged as particularly important for making predic-
tions, as most regulatory features are not currently known
for this organism, and 3) use discovered sequence motifs
to build DNA parts, like synthetic promoters, to more ef-
fectively control foreign genes in newly installed metabolic
pathways. Deep learning approaches have already seen
successes in model organisms with plenty of data. This
proposal explicitly aims to extend these approaches to non-
model organisms that have thus far received less experimen-
tal attention but still warrant genetic characterization due to
their potential to serve as metabolic engineering platforms.

M. buryatense is a promising microbe that, if effectively en-
gineered, could divert methane emissions into useful prod-
ucts. This approach may similarly be applied to other or-
ganisms with desirable metabolic properties, enhancing our
ability to develop genetic tools more broadly. Overall, we
aim to extend the reach of machine learning to metabolic
engineering in non-model organisms, a field with direct av-
enues for impacting climate change by enabling sustainable
molecule production and redirecting harmful emissions into
valuable materials.
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