Street2Sat: A Machine Learning Pipeline for Generating Ground-truth
Geo-referenced Labeled Datasets from Street-Level Images

Madhava Paliyam ! > Catherine Nakalembe !> Kevin Liu'? Richard Nyiawung

Abstract

Ground-truth labels on crop type and other vari-
ables are critically needed to develop machine
learning methods that use satellite observations to
combat climate change and food insecurity. These
labels are difficult and costly to obtain over large
areas, particularly in Sub-Saharan Africa where
they are most scarce. We propose Street2Sat, a
new framework for obtaining large data sets of
geo-referenced crop type labels obtained from
vehicle-mounted cameras that can be extended to
other applications. Using preliminary data from
Kenya, we present promising results from this ap-
proach and identify future improvements to the
method before operational use in 5 countries.

1. Introduction

Climate change is already impacting global food production
(Wolfram & Lobell, 2010). Increasing temperatures, chang-
ing precipitation patterns, increased weather variability, and
more frequent extreme events are projected to further inten-
sify in many developing countries where food production is
already challenged (Nakalembe, 2018; Parry et al., 2004).
Decision makers need more accurate and timely information
on what, where, and how crops are performing to assess
food security situations and ground data are required to
derived those insights from Earth observations (EO) data
(Becker-Reshef et al., 2020; Nakalembe et al., 2021a). Farm-
ers are also desperate for actionable information to improve
their practices and break the cycle of poverty. EO derived
projects on crop conditions, yield and their changes as cli-
mate changes can inform programs and policies to guide
climate resilient planning, implementation, and program
management that directly lead to better outcomes for farm-
ers (Becker-Reshef et al., 2019; Nakalembe, 2018).
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Recent advances in machine learning (ML), cloud comput-
ing, and EO technologies have spurred promising solutions
toward addressing the UN’s Sustainable Development Goals
and Targets and provide critical data to inform climate re-
silient programs and adaptation planning (Whitcraft et al.,
2019; Nakalembe, 2018). The limiting factor today is a lack
of ground-truth data for training and validating ML methods
that use EO data as inputs. Ground-truth data are particu-
larly lacking in rural and underdeveloped regions that are
home to most of the world’s 500 million smallholder farmers
(Nwanze, 2017). Smallholders produce about 80% of the
food consumed in Asia and sub-Saharan Africa. They face
the greatest losses due to climate change but can also make
the biggest contributions toward addressing food insecu-
rity in these regions (Nwanze, 2017; McCarthy et al., 2001;
Nakalembe et al., 2021a; Nakalembe, 2020; nat, 2020).

Ground-truth data required to develop these critical informa-
tion products are scarce, often collected opportunistically
and on a project-to-project basis (Kerner et al., 2020; Tseng
et al., 2020; 2021). There is an urgent need to collect high-
quality data sets to advance ML methods that can inform
programs to benefit people and ecosystems under-served
regions. Given the large geographical areas, complexity
of smallholder systems, and need for continuous data col-
lection due to the changing nature of land cover/land use,
transformative data collection approaches must be scalable,
affordable, and equitable (Nakalembe et al., 2021b).

We propose a new method for data collection that performs
automated windshield surveys by collecting images of road-
side objects at regular intervals using vehicle-mounted cam-
eras and predicting the locations and labels of objects of in-
terest in the images. Our proposed system, called Street2Sat,
transforms a set of geo-tagged images collected from a vehi-
cle on the road to a set of labeled geo-referenced points with
locations corresponding to the object(s) of interest detected
in the images. These points can then be used as labels for
satellite images. We focus on the use case of mapping small-
holder agriculture given urgency for ensuring food security
in a changing climate (Nakalembe et al., 2021b; Nakalembe,
2020; nat, 2020). However, this approach could be applied
for any use case where objects of interest can be seen from
a road, including monitoring housing quality, construction,
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wildlife, damage assessment and more. In this paper, we
describe the details of our Street2Sat system and present
initial results from a pilot study in western Kenya in 2020.

Our key contributions include:

* A low-cost approach to creating ground-truth geo-
referenced labeled datasets from street-level images

* Open code for replicating the process for other data
sets or applications'

* Open data set that can be used as a benchmark for crop
type mapping methods

2. Related Work

Matching ground and satellite images Several solutions
for finding the satellite location or image corresponding to
a ground image have been proposed in prior work. Some
approaches use the image GPS location. Yan & Ryu (2021)
used Google Street View images to create a data set of geo-
referenced crop type points. They assigned crop type labels
by classifying the crop type in the image using a Convolu-
tional Neural Network (CNN), then used the image heading
and location to move the point location from the road to the
field using constant offsets. They verified their predictions
by comparing to the USDA Cropland Data Layer. This is
similar to our goal except they assign one crop type to the
entire image and use a constant relocation offset, which is
problematic for smallholder fields with irregular shapes and
mixed crops. In lieu of GPS location, Viswanathan et al.
(2014) warped the ground image to obtain an estimation of
the satellite image. They found a whole image descriptor
for the warped ground image and matched it with the most
similar descriptors from many satellite images. Other ap-
proaches like Hu & Lee (2019) used multiple frames from
a video and Cai et al. (2019) used triplet loss and channel
attention to improve the geo-location accuracy of images by
matching street view images with satellite images.

Crowdsourced labels Crowdsourcing is another approach
to scalable ground-truth data collecting and is particularly
relevant to Street2Sat because the low-cost image collection
setup is amenable to crowdsourced data collection in the
future. For example, Wang et al. (2020) used geo-located
images from Plantix, a smartphone app to identify crop
diseases. User-identified labels were paired with satellite
imagery to train ML classifiers. To filter out points with
noisy location data, they trained a separate CNN to identify
points with locations not on fields.

Monocular depth estimation Traditional approaches use
photogrammetry to estimate the distance to an object in an
image if certain parameters like focal length or object height

'https://github.com/nasaharvest/
street2sat_website/tree/ICML_paper_code

Figure 1. Street2Sat pipeline

are known. There have been many recent deep learning ap-
proaches to monocular depth estimation (Khan et al., 2020),
such as AdaBins (Bhat et al., 2020), SGDepth (Klingner
et al., 2020), Monodepth2 (Godard et al., 2018). Since
many approaches do not generalize well to images outside
the training domain, MiDaS (Lasinger et al., 2019) and Di-
verseDepth (Yin et al., 2020) used many data sets to build a
more generalizable model that could be used off-the-shelf.

The goal of this work is to locate crops in street-level images
and translate the image location to the crop location. While
some prior studies tackle similar problems, they do not pro-
vide a complete solution and may have limited performance
for regions like Sub-Saharan Africa where smallholder fields
contain multiple crops with similar foliage.

3. Street2Sat Pipeline

The goal of Street2Sat is to turn geo-referenced images
acquired from roads into geo-referenced labeled point sam-
ples with locations corresponding to objects of interest in
the images. The pipeline consists of data collection, pre-
processing, object detection, depth estimation, relocation,
and quality assessment/control (QA/QC) (Fig. 1).

Data collection The images for our initial study were col-
lected in Western Kenya (Bungoma, Kakamega, and Busia
counties) in November 2020. Two teams drove cars with
GoPro Max 360 cameras pointing orthogonal to the drive
direction toward the nearest roadside (left/driver side). Driv-
ing routes were determined using existing roads data and
cropland maps to ensure full coverage of the environmental
and crop production gradients (Waldner et al., 2019).

Pre-processing Since crops may be tilted in some images
due to inclined roads or mounting, we applied an automatic
straightening procedure to images in pre-processing. This is
important because we use the height of the bounding box to
estimate the crop height and distance from the sensor. We
straightened images using Otsu’s method in OpenCV for
automatic image thresholding to separate the background
from foreground. The background and foreground locations
were used to find a horizon line to straighten the image.
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Object detection We used YOLO-v5 (Jocher et al., 2021)?
to predict bounding boxes around crops since it has shown
good performance for a variety of domains. We initialized
the network using pre-trained weights from COCO (Lin
et al., 2014) and fine-tuned for crop type classes using man-
ually labeled images from the data collection stage.

Depth estimation We used a simple method based on ra-
tios for estimating the distance to each predicted bounding
box. We assume the true height of each bounding box is
known based on the crop type and its growth stage, which
we store as a lookup table. For example, sugarcane crops
in the Kenyan Sugar Belt range 3-4 m at maturity while
maize averages 3 m in Kenya (Juma & George, 2018; Melik
et al., 2013). While most crops are expected to be at similar
growth stages during data collection, there is still substan-
tial variability in growth stages due to the heterogeneity of
smallholder farming practices which could result in errors.
We will explore approaches to resolve this in future work.
We used the following equation to estimate the distance:

d = (lfocal * hcrop * himage) (1)
(hbboz * hsensor)

The focal length, [ ¢4cq1, Was obtained from the EXIF image
metadata; the crop height, hc,qp, is from the height lookup
table; hppoy 1S the height of the bounding box in pixels;
Nimage 18 the height of the image in pixels; and the GoPro
sensor height hgernsor 1S 4.55 mm. We calculated the dis-
tance to each bounding box and then calculated the average
depth for all of the boxes of the same crop type class to get
a single depth for the field.

Relocation Moving the location from the image/vehicle
location to the crop location d m away requires knowing the
compass direction to move the point along. Since the image
heading is not recorded in GoPro metadata, we obtain the
direction of the vehicle by using the closest point in time
available in the drive data set to compute the velocity vector.
We assume that the camera was pointed towards the left of
the car orthogonal to the drive direction and move the point
d m in the direction 90 degrees west of the heading.

QA/QC Errors could occur in this pipeline due to a va-
riety of factors such as poor lighting, mixed crop fields,
occlusions, and object detection errors. In future work, we
plan to apply techniques for quality assessment and control
(QA/QC) to identify points with possible errors and cor-
rect them, e.g., out-of-distribution detection to find outliers
located on roads or other objects.

4. Preliminary results

We conducted a preliminary experiment using the data col-
lected in Kenya to test the pipeline. We labeled 296 training
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Figure 2. Example test image with labeled (left) and predicted
(right) bounding boxes. Due to coarse and non-exhaustive labeling,
there are often more correct bounding boxes predicted in the image
than are included in the labels.

and 53 test images containing maize and sugarcane from 3
drives. The resulting data set included 755 instances (bound-
ing boxes) of maize and 1,795 of sugarcane in the training
set and 253 maize and 229 sugarcane in the test set. La-
beling was guided by recommendations from agricultural
experts. The test set performance metrics are as follows:
Precision: 0.41, Recall: 0.59, mAP @ 0.5: 0.45, and mAP
@.5-.95: 0.13. Due to the difficulty of drawing a bounding
box around individual plants in a crop field, bounding box
labels often included multiple plants and did not cover every
crop instance in the image. As a result, there are often more
correct bounding boxes predicted in the test image than are
included in the labels for that image (e.g., Fig. 2), which
can result in low precision. In addition, finding an accurate
height of the crops is more important than the number of
detected crops for accurate distance prediction.

Since we did not have ground-truth estimates of the distance
from the cameras to the crops in the images, we evaluated
the relocation results in a similar manner to Yan & Ryu
(2021) by comparing the new locations to a 10 m/pixel
cropland map of Kenya (Tseng et al., 2020). Out of 85 test
points from one drive, 73 (86%) coincided with pixels also
classified as crop in the map.

5. Conclusion and future work

We present a pipeline for obtaining geo-referenced points
of objects of interest in images taken from vehicles on the
road. We show that our pipeline has promising results using
pilot data and are working to resolve challenges with image
heading accuracy, setting up/securing cameras, and QA/QC.
We plan to use Street2Sat to process images from upcoming
data collection in 5 African countries. Though our focus is
smallholder agriculture, our approach can be applied to other
applications (e.g., wildlife tracking and damage assessment)
and images from Google Street View. In future work we will
implement field-based validation of height and distance and
explore a Street2Sat approach to yield estimation, which is
highly correlated with crop height (Melik et al., 2013; Juma
& George, 2018). This could provide critical information for
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food security policies, supply chain optimization to reduce
food waste, a leading cause of food insecurity globally.
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