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Abstract

Realistic modeling of the movement of the Arctic
fox, one of the main predators of the circumpo-
lar world, is crucial to understand the processes
governing the distribution of the Canadian Arctic
biodiversity. Current methods, however, are un-
able to adequately account for complex behaviors
as well as intra- and interspecific relationships.
We propose to harness the potential of reinforce-
ment learning to develop innovative models that
will address these shortcomings and provide the
backbone to predict how vertebrate communities
may be affected by environmental changes in the
Arctic, an essential step towards the elaboration
of rational conservation actions.

1. Introduction

The Canadian Arctic Archipelago is one of the most
vulnerable places in the world to climate change. Its
ecosystems, closely tied to the extreme conditions of
the North, are particularly fragile and their integrity is
threatened by a warming rate faster than lower-latitude
parts of the globe (Bush & Lemmen, 2019). Because Arctic
food webs are composed of a few highly interconnected
species, negative impacts affecting one component of
the system are likely to have cascading effects on all of
the others. Understanding how disruptions of specific
trophic interactions scale up to the entire system is key
to anticipate the consequences of global environmental
changes, but large scale modeling of ecological interactions
is challenging and the ecosystem monitoring required to
parametrize them are rare (Godsoe et al., 2017).
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One of the flagship species for the study of climate
change in the Arctic is the Arctic fox (Vulpes lagopus)
(Ehrich et al., 2015). It is its only endemic terrestrial
predator (Fugley & Ims, 2008) and its populations are
currently monitored at 34 sites throughout the circumpolar
North (Berteaux et al., 2017). In Canada, they are notably
studied through a research station on Bylot Island, an 11
100 km? island located at the northern tip of Baffin Island,
Nunavut (Figure 1a). Indeed, the movements of Bylot foxes
are actively monitored with GPS tracking collars since 2007
(see Figure 1b).
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Figure 1. (a) Location of Bylot Island (box) on a map of Canada.
(b) GPS location every 4 minutes of four foxes over a three month
period in 2018 and 2019 on a map of Bylot.

The study of predators is particularly important in the
Canadian Arctic, as they are the dominant force controlling
its food web (Krebs et al., 2003; Gauthier et al., 2011).
A change in predator-prey interactions can significantly
disrupt the ecosystem dynamics, and understanding how
predation affects the distribution of Arctic biodiversity is
critical to preserve its integrity in the face of environmental
changes. Such an understanding can only be achieved with
the help of mathematical models able to transform field
data into powerful explanatory and predictive tools.

Bylot’s Arctic foxes tracking data, coupled with satellite
maps and prey abundance information, can be used to
model their movements at the individual level. Realistic
modeling of animal movement is a crucial first step to
understand the processes regulating species distribution
and abundance. Indeed, in heterogeneous landscapes,
movement ties ecological processes together and dictates
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how species interact with each other (Cagnacci et al., 2017).
Current methods in ecology are however insufficient to
capture complex movement decisions and their sequential
nature adequately. On the other hand, reinforcement
learning (RL) (Sutton & Barto, 2018) methods, where an
agent tries to optimize its decisions through trial and error,
could be well suited to solve such tasks. They are still fairly
unexploited in ecology (Frankenhuis et al., 2019), even if
there is a growing interest in the application of machine
learning to this field (Hirakawa et al., 2018; Lucas, 2020;
Wijeyakulasuriya et al., 2020).

Our goal is to bridge this gap and harness the poten-
tial of RL to model Arctic biodiversity. Using extensive
ecological data (Section 2) from the long-term monitoring
program of Bylot Island, we aim to build models to
predict movement decisions of Arctic foxes in a terrestrial
community. This will provide the backbone for mechanistic
models integrating species interactions to predict how
vertebrate communities may be affected by environmental
changes in the Arctic.

In this work, we present to which extent current
methods fail to accurately model the movement of Arctic
foxes (Section 3), and how we propose to use RL to
address this issue (Section 4). We explain how we plan to
demonstrate that RL approaches can do at least as well as
the current methods used in ecology, and how we intend
to use this technology to build significantly more realistic
movement models, both in single-agent and multi-agent
settings. Computer scientists and ecologists involved in
the project will work in close collaboration to develop
relevant models with strong generalization capabilities,
so that the insights they provides can be reliably used to
further our understanding of the mechanisms shaping Arctic
biodiversity and help policymakers to guide management
decisions in a changing environment.

2. Data

We will use the 4-minute interval GPS tracking data from
21 foxes during the summer of 2018 and 2019 (687, 129
records), available in Movebank'. In addition, it is planned
that ecologists will collect additional tracking data every
summer for the 2021-2024 period. We also have access to
the geographical location of 110 Bylot dens. Habitat and to-
pography maps will be extracted from 0.3-m WorldView-32
(WV3) satellite images of Bylot Island that will be acquired
during Summer 2021. A habitat map associates each pixel
of a satellite image to an element of a discrete set of habitat

"https://www.movebank.org/cms/webapp?gwt_
fragment=page=studies, path=studyl1241071371
http://worldview3.digitalglobe.com/

types such as ice, complex wetlands, gravel beds, or wet
meadows. We will generate a habitat map following the
approach of Chen et al. (2017) with a training set that will
be obtained from photointerpretations and manual classifi-
cation of land sites in the field. We also have lower preci-
sion tracking data of 66 foxes (12-hour interval, 229, 657
records) from Lai et al. (2017) for the 2007-2013 period,
which are nonetheless sufficiently accurate to help evalu-
ate the realism of our models outside the areas covered by
the 4-minute interval tracking data. Finally, as for the prey
abundance information, we will use a map of snow goose
nest density obtained through intensive field surveys (de-
scribed in Grenier-Potvin et al. (2021)) and nest counts from
the WV3 images. Lemming abundance will be determined
based on their habitat preferences, as it is not possible yet
to obtain a density map for this animal. Lemmings’ habitat
preferences are documented in Fauteux et al. (2015).

3. A fundamentally limited baseline

The most common way to model the movement of an animal
at the individual level from the tracking data of N individ-
uals in ecology is through Step Selection Function (SSF)
(Fortin et al., 2005; Forester et al., 2009; Thurfjell et al.,
2014; Avgar et al., 2016). Let S; 1, S; 2, ..., Si,7 denote the
recorded locations for an animal ¢ € {1, ..., N}, where each
location .S; ; is characterized by d explanatory variables (e.g.
habitat type, prey density, ground elevation, distance to den)
denoted as s; ; € R%. The SSF is a discrete choice model
that compares the recorded locations to .J control locations
based on their explanatory variables. Control locations for a
given animal correspond to locations that could have been
visited by this individual. They are usually obtained from
the empirical distributions of movements metrics such as
step lengths (the Euclidean distance between two consecu-
tive locations) and turning angles (Fortin et al., 2005). Let
Y, ; € R7*4 denote the matrix containing the explanatory
variables y; 14, ...,¥,s: of the J control locations of the
animal ¢ at step ¢. The data for an SSF analysis is therefore
D= {(Si,hsi,t-‘rl;Yi,t) ‘ 1<t< T—1N1 <1< N} and
the probability that animal ¢ moves to the location S; ;11
instead of any control location is defined as

pis exp(sZ-T,t_l_lﬂ) )
it = T )
eXp(S{tJdﬂ) + Zj:o eXP(Yljtﬂ)

where 3 € R? is a vector of unknown selection parameters
estimated by maximizing the conditional regression
likelihood given by L(8) = [I, 1, pi: (Nicosia
et al., 2017). The vector 3 can then be used within Eq. 1 in
movement simulations to study the animal’s behavior and
preferences.

The SSF is simple and easy to implement, but it is a
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fundamentally limited approach. Indeed, it is based on
an estimator assuming that D is made of independent
samples. That is to say that the sequential nature of the
data is ignored, even if it is inconsistent with the fact
that the animal’s space-use behavior is memory-based
(Spencer, 2012). Furthermore, Arctic foxes concentrate
their activities within areas called home ranges (see Figure
1b) and biased correlated random walk models, for which
the SSF can be shown to be equivalent (Duchesne et al.,
2015), are unable to faithfully recreate these patterns
(Borger et al., 2008). The movement of the Arctic fox
therefore cannot be realistically modeled using an SSF. As
movement is a critical process affecting population numbers
and the outcome of species interactions (Turchin, 2015),
more realistic movement models of key predators must
be developed in order to provide insights about how this
important aspect of ecological dynamics will be affected by
climate change in the Arctic.

4. From simple to realistic movement models

Aim 1 : Demonstrating the potential of RL

The assumptions made by the SSF are reminiscent of the
ones defining the contextual bandit setting (see Lattimore &
Szepesvari (2020)). In this simplified RL setting, a learning
agent iteratively observes a context and is presented a set of
available arms, among which it has to decide which one to
pull. After pulling an arm, it receives a reward associated to
the selected arm. The goal of the agent is to pull the arm
leading to the highest reward given the context, assuming
that its decision at a given time does not influence the future
(arrival of contexts, available arms). We can formulate our
problem under this setting by sampling at each time ¢ a
tuple (s; 4,8, ¢+1, Yir) ~ D, define s; 1 as the context,
and consider that the set of available arms contains s; ;71
and the rows of Y; ;. The agent is rewarded if it chooses
si.+'+1 and penalized otherwise. We will assume that the
expected reward of a location is linear with respect to its
explanatory variables (Chu et al., 2011; Abbasi-Yadkori
et al., 2011; Agrawal & Goyal, 2013), so as to obtain a
discrete choice model that should be very similar to the
SSF. This initial model will allow us to demonstrate that RL
approaches can educate us at least as well as the SSF on the
basic aspects of the Arctic fox’s space-use behavior.

Aim 2 : Enable the emergence of home range pat-
terns and spatial memory management

The core of our project is to develop realistic models able
to adequately capture the sequential nature of an Arctic
fox’s movement decisions. RL approaches are specifically
designed to handle sequential data and have been applied in
a variety of challenging tasks, like robotics (Kober et al.,
2013) or autonomous driving (Sallab et al., 2017). We there-
fore strongly believe that they could be able to overcome

the limitations of the SSF by replicating complex behaviors
such as home range patterns or spatial memory management.
Unlike contextual bandits, a typical RL agent assumes that
each action may influence the whole trajectory and that
a wrong choice may penalize it for all subsequent time steps.

Since the agent must learn from existing trajectories,
we will leverage offline RL strategies (see Levine et al.
(2020)), which can learn a behavior policy from demon-
strations associated with a reward signal. The challenging
task of shaping a reward from the tracking data will be
conducted in close collaboration with ecologists, allowing
to integrate expert knowledge into the RL models. Finally,
we intend to leverage the approximation power of neural
networks (LeCun et al., 2015) and their ability to handle
non-linear relationships for learning rich representations
that can allow precise behavior modeling. Home range
patterns and spatial memory management are expected to
emerge from these more complex models. A successful
integration of these two key elements would represent a
major advance for the study of the Arctic biodiversity in a
context of global change.

Aim 3 : Reveal the impact of territorial dynamics
on the repartition of Arctic biodiversity

Arctic foxes are territorial animals and their intraspecific
relationships greatly influence their space use (Grenier-
Potvin et al., 2021). Limiting our approach to a single-agent
perspective will prevent us from considering the true
nature of these competitive interactions. Inspired by a
game theoretical analysis of models of interacting wolf
packs, where the Nash-equilibrium resulting from the
tradeoff between expanding a territory and avoiding conflict
gave rise to no-wolf’s lands where prey’s are empirically
known to find refuge (Hamelin & Lewis, 2010), we aim
to extend our model to the multi-agent setting in order to
have a better understanding of the impact of the complex
dynamics between neighboring foxes on their ecological
community. Modeling foxes territorial dynamics as an
n-player adversarial game (Song et al., 2018) could help
reveal the influence of these relationships on the repartition
of Arctic biodiversity.

Metrics

We will split the tracking data into train and test sets
in order to evaluate the quality of the proposed models
based on their accuracy score when predicting unseen fox
trajectories. Models will be re-evaluated and improved each
year during the 2021-2024 period using new data collected
through the monitoring program at Bylot. Using realism
metrics defined by ecologists on specific key elements such
as the home range size of a simulated fox, we will also
evaluate the quality of complete trajectories generated by
the proposed models. This will be essential in order for
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them to be considered and used within the community to
help understand the role of predation in the regulation of
Arctic ecosystems as well as to anticipate how they will be
affected by climate change.

5. Towards mutual enrichment

The first step towards anticipating the impact of climate
change on the Canadian northern ecosystems is to under-
stand their key determinants. Our movement models will
meet this need through simulations that will help ecolo-
gists to explain how variations in predation risk contributes
to shape the local biodiversity. They could also help pre-
dict Arctic foxes’ response to specific environmental distur-
bances. Moreover, this novel application of RL to a real-
world problem should raise interesting challenges for the
RL research community. For example, assumptions made
by most theoretical work for providing generalization guar-
antees are often considered too restrictive (Dulac-Arnold
et al., 2021). We strongly believe that this interdisciplinary
project will contribute to bridging the gap between RL the-
ory and practice while opening new research directions for
supporting the development of rational conservation actions.
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