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Abstract

Wildfire impact studies are significantly hampered
by the absence of a global long-term burned area
dataset. This prevents conclusive statements on
the role of anthropogenic activity on wildfire im-
pacts over the last century. Here, we propose a
workflow to construct a 1901-2014 reanalysis of
monthly global burned area at a 0.5° by 0.5° scale.
A neural network will be trained with weather-
related, vegetational, societal and economic input
parameters, and burned area as output label for
the 1982-2014 time period. This model can then
be applied to the whole 1901-2014 time period
to create a data-driven, long-term burned area re-
analysis. This reconstruction will allow to investi-
gate the long-term effect of anthropogenic activity
on wildfire impacts, will be used as basis for de-
tection and attribution studies and could help to
reduce the uncertainties in future predictions.

1. Introduction

In recent years, there has been an unusually extensive wild-
fire activity all over the world. Forest fires raged across
California in 2017, 2018 and 2020, Australia faced unprece-
dented bushfires in 2019-2020, and even Siberia was hit by
wildfires in 2019 and 2020. Events like these cause a direct
loss of life, with for instance 100 fatalities during the 2018
California wildfires and wildfire-induced respiratory prob-
lems causing premature deaths in large parts of the world
(Reid et al., 2016; Porter et al., 2019; Matz et al., 2020).
In addition, wildfires lead to significant economic damages
and costs for fire suppression (Strader, 2018; Goss et al.,
2020). While regular-sized wildfires sustain biodiversity
and ecosystem health, megafires have clear adverse effects

'Hydrology and Hydraulic Engineering, Vrije Uni-
versiteit Brussel,  Brussels, Belgium “®-lab, Euro-
pean Space Agency, Frascati, Italy. Correspondence
to: Seppe Lampe <Seppe.Lampe@vub.be>, Bertrand
Le Saux <Bertrand.Le.Saux @esa.int>, Inne  Van-
derkelen  <Inne.Vanderkelen@vub.be>, Wim  Thiery
<Wim.Thiery @vub.be>.

Tackling Climate Change with Machine Learning Workshop at
ICML 2021.

Bertrand Le Saux?> Inne Vanderkelen! Wim Thiery '

on ecosystems and biodiversity (Driscoll et al., 2010; North
etal., 2015; Doerr & Santin, 2016; Andela et al., 2017). Dur-
ing the 2019-2020 Australian bushfires, an estimated one
billion animals were killed, while hundreds of Australian
plant and animal species now face extinction (DAWE, 2020;
Filkov et al., 2020; Wintle et al., 2020).

Evaluating the imprint of human activity on climatic vari-
ables and impacts is done via the application of detection
and attribution methodologies (Field et al., 2014). Detec-
tion refers to the process of demonstrating that climate or
a system affected by climate has changes in a defined sta-
tistical sense, whereas attribution implies the evaluation
of relative contributions of multiple causal factors to this
change given a specific statistical confidence (Field et al.,
2014). Instead of looking at wildfire impacts, like burned
area, most wildfire detection and attribution studies have
traditionally been limited to atmospheric variables, whereby
most build on a version of the Fire Weather Index (FWI)
(Bindoff et al., 2013; Gudmundsson et al., 2014; Krikken
et al., 2019; Kirchmeier-Young et al., 2019; Abatzoglou
et al., 2019; van Oldenborgh et al., 2020).

The motivation behind the choice of atmospheric variables
is that wildfire activity is partly determined by local weather
i.e., prolonged periods of dry, hot weather increase the fre-
quency and severity of wildfire activity. However, wildfire
activity is actually influenced by a wide range of drivers,
including, but not limited to, weather, topography, vegeta-
tion type and density, and firefighting measures (Turco et al.,
2014; Abatzoglou & Williams, 2016; Goss et al., 2020;
Podschwit & Cullen, 2020). Therefore, a more appropriate
tool for capturing on-the-ground impacts of wildfires and
for investigating the changes in their activity has been re-
cently proposed: the measure of burned area (Abatzoglou &
Williams, 2016; Andela et al., 2017).

Despite its relevance for representing wildfire impacts,
burned area is much more complex to model compared
to fire weather indices, due to all the confounding factors
influencing burned area. As a consequence, burned area
is typically only poorly represented in current-generation
climate models that serve as the default input for detection
and attribution studies (van Oldenborgh et al., 2020).

In addition to the challenges of modelling burned area, the
absence of a long-term global burned area record hampers
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the detection and attribution of wildfire activity (Randerson
et al., 2015; Andela et al., 2017; Forkel et al., 2019). Cur-
rently, the most widely-used wildfire dataset, Global Fire
Emissions Database version 4 (GFED4), provides satellite-
derived burned area observations at 0.25° horizontal resolu-
tion (Randerson et al., 2015). However, this dataset contains
only ~20 years of data, and its validity for long-term trends
is highly uncertain, especially on a global scale. Recently
(Dec 2020), a new global burned area dataset, Fire Climate
Change Initiative Long-Term v1.1 (FireCCILT11), has been
released. FireCCILT11 was developed as part of the Fire
project of the European Space Agency Climate Change ini-
tiative and spans ~36 years thanks to the harmonisation of
measurements originating from a range of satellites (Otén,
2020). This dataset provides new opportunities to inves-
tigate the long-term changes in wildfire activity impacts.
However, despite its significant increase in time span, FireC-
CILT11 only goes back to 1982, preventing any conclusive
statements on wildfire impacts before this period.

Novel machine learning techniques demonstrate a large po-
tential to gap-fill and back-extend climate impact datasets
(Humphrey et al., 2017; 2018; Padrén et al., 2020; Ghiggi
et al., 2019; Lange, 2020). For instance, data-driven statisti-
cal modelling has been used to back-extend satellite-based
terrestrial water storage estimates (Humphrey et al., 2017;
2018), whereas a random forest approach enabled the re-
construction of monthly runoff rates (Ghiggi et al., 2019)
and renewable freshwater resources (Padron et al., 2020).
The combination of this new dataset (FireCCILT11) with
these novel methodological approaches generates momen-
tum to push the boundaries of current wildfire research.
Here, we propose a workflow to reconstruct a new long-
term (1901-2014) burned area dataset. This dataset will
allow to investigate the long-term effect of anthropogenic
activity on wildifre impacts, will be part of further detec-
tion and attribution studies and can potentially reduce the
uncertainties in future wildfire predictions. Furthermore,
this dataset can be an essential asset for applying machine
learning in wildfire research and in future applications in
the wildfire management sector.

2. Data

The project relies on atmospheric (GSWP3-WS5ES5), vegeta-
tional (LUH2) and socioeconomic (ISIMIP3b simulations)
data available through ISIMIP, and on burned area data from
the FireCCILT 11 dataset. An overview of these datasets is
given in Figure 1 and in the following paragraphs.

Firstly, GSWP3-WS5ES5 contains daily reanalyses of the at-
mospheric climate from two separate datasets i.e., Global
Soil Wetness Project Phase 3 (GSWP3) and Watch Forc-
ing Data for ERAS (W5ES), both of which represent daily
global meteorological data on a 0.5° by 0.5° resolution, com-
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Figure 1. The time span, temporal resolution and spatial resolution
of the datasets included in this proposal.

bined they span from 1901 to 2016 (Dirmeyer et al., 2006;
Lange, 2019; Cucchi et al., 2020; Lange, 2020). Each pixel
is represented by ten fields i.e., specific humidity, relative
humidity, daily maximum, minimum and mean tempera-
ture, short and long wave downwelling radiation, surface air
pressure and wind magnitude, and total precipitation.

Land use, land cover and land management information
is provided in ISIMIP3a by Land Use Harmonization 2
(LUH2), an annual gridded (0.5° by 0.5°) dataset for the
years 1850-2018 (Goldewijk et al., 2017; Hurtt et al., 2020).
Gross Domestic Product (GDP) and annual population
are represented in the ISIMIP3b simulations as an annual
country-wide value for the years 1850-2014 and 1850-2020,
respectively (Lange, 2020). Population density and wildfire
activity are positively correlated, an increase in population
density will generally lead to an increase in the number
of fires (Krause et al., 2014; Flannigan et al., 2016; Read
et al., 2018). There is an anti-correlation between GDP and
wildfire activity due to increased fire management (Alder-
sley et al., 2011), while land use is closely linked to fuel
availability (Westerling et al., 2006; Balch et al., 2017).

Lastly, the FireCCILT11 dataset contains global estimates
of monthly burned area and is available in two spatial reso-
lutions i.e., 0.05° and 0.25° (Fig. 2). FireCCILT 11 is based
on the Advanced Very High Resolution Radiometer Land
Long Term Data Record (AVHRR-LLTDR) and covers the
period 1982-2018 with the exception of 1994 (Otén, 2020).

3. Methodology

In this section, we present the reconstruction task with its
corresponding inputs and outputs, evaluate the feasibility of
training such a model, and propose several architectures to
implement in order to capture the complexity of the precur-
sors.

Wildfire activity is governed by a multitude of processes and
parameters, most of them related to weather, land use/cover
and human activity. Although many of the parameters influ-
encing wildfire activity are known, their exact mathematical
relationship to wildfire activity is often not entirely clear.
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Figure 2. The global burned area of August 1982 according to the
FireCCILT11 product (Otén, 2020).

Thus, to build a well-functioning prediction model, the most
important of these parameters need to be considered by the
system. Firstly, the characteristics of the local vegetation are
most vital factor i.e., if there is no vegetation, there cannot
be a wildfire. Secondly, the local weather pattern plays a
significant role for wildfire activity through aridity and fuel
availability. Lastly, as discussed earlier, the socio-economic
development should also be included. Therefore, a neural
network with as input (i) LUH2 land cover, land use and
land management, (ii)) GSWP3-WS5ES atmospheric reanal-
ysis and (iii) ISIMIP3b GDP and population, and burned
area (FireCCILT11) as prediction label will be trained. This
network will thus consider vegetation-related parameters,
the preceding weather pattern and socio-economic factors.

The label dataset (FireCCILT11) spans ~35 years (1982-
2016 but 1994 is excluded) with monthly temporal reso-
lution, resulting in 420 (35*12) data samples, where each
data sample represents a global map of monthly burned area
(Fig. 2). This number is too little for adequate training of
a neural network. Therefore, at each time step, each pixel
will be considered as a separate data point. As the GSWP3-
WSES product only spans to 2016 and the ISIMIP3b GDP
dataset to 2014, we cannot use the period 2015-2018 of the
FireCCILT11 dataset. This results in 31 years of applicable,
available data. This will be applied at a 0.5 by 0.5 resolu-
tion, resulting in 360 * 180 pixels per month. However, ~§
of those pixels represent oceans and seas and will therefore
not be included in the model. A rough estimation of the
total amount of data samples (31 % 12 x 360 * 180 x % ~ 8.0
*10%) indicates that there should be sufficient data to train
a neural network with the aforementioned parameters.

Several considerations will have to be made during the con-

struction and training of the network. Firstly, the model
should optimally consider more than one month of atmo-
spheric data. The dryness of vegetation and soil have a large
impact on the occurrence and size of wildfires. This dryness
is the result of local weather over the preceding months.
Thus, the network should probably consider ~three months
of antecedent atmospheric reanalysis data (GSWP3-WS5ES).
Furthermore, the amount of input data will need to be op-
timised. Without any changes, the neural network takes as
input: ~one value each for land cover, land use, land man-
agement, GDP and population density but ~900 values of
antecedent daily atmospheric reanalyses (three months * ten
parameters per day). Several options are available to reduce
the size of these atmospheric reanalyses, and thus reduce the
total number of weights in the network e.g., manual selec-
tion, temporal upscaling, principle component analysis, etc.
Even if the most suitable implementation for this project
will need to be determined empirically, likely candidates for
modelling such data will be recurrent neural networks such
as gated recurrent units (Chung et al., 2014).

By dividing the pixels into separate data points, the network
cannot learn geospatial unique information which might
have an effect on wildfire activity e.g., topography. If the
model does not reach the desired performance, it might be
improved by adding a topography-related value for each
pixel or analyse further which parameters might be miss-
ing. Furthermore, the training period could potentially be
expanded to 2018 if suitable replacements can be found
for the 2017-2018 period of GSWP3-WS5ES and 2015-2018
period of the ISIMIP3b GDP dataset. Given the recent time
period of these data gaps, it is highly probable that there
are alternatives for these periods. However, the assessment
strategy of these alternatives might slightly differ from the
GSWP3-WS5ES and ISIMIP3b GDP datasets. Therefore, we
will only consider including these extensions if it is deemed
needed. In that case, we will investigate fully-convolutional
versions of recurrent networks, such as ConvLSTM (Shi
etal., 2015).

If a network can be trained, which is sufficiently accurate
and generalizing, it can be applied on the whole 1901-2014
time span to generate a new long-term burned area dataset,
spanning 114 years at 0.5° by 0.5° spatial resolution and
monthly time step. The reconstruction will be evaluated
against existing long-term regional burned area data (e.g.
available for California and selected European countries).

4. Conclusion & Discussion

Disentangling the intricate anthropogenic impact on wild-
fire activity is complex and still under debate. In addition,
the lack of a long-term burned area dataset hampers trend
detection and attribution in the field of wildfire impact stud-
ies. Here, we propose a workflow to train neural networks
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with ISIMIP data as input and the recently published FireC-
CILT11 dataset as label to create a 114 year long burned
area dataset. This dataset will, for the first time, allow to
investigate the long-term effect of anthropogenic activity
on wildfire impacts. It will also be the basis of further de-
tection and attribution studies and could potentially reduce
the uncertainties in future wildfire activity predictions. Fur-
thermore, this dataset could become an essential asset for
applying machine learning in wildfire research and in future
applications in the wildfire management field.
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