Deep learning applied to sea surface semantic segmentation:
Filtering sunglint from aerial imagery
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Abstract

Water waves are an ubiquitous feature of the
oceans, which serve as a pathway for interactions
with the atmosphere. Wave breaking in particular
is crucial in developing better understanding of
the exchange of momentum, heat, and gas fluxes
between the ocean and the atmosphere. Character-
izing the properties of wave breaking using orbital
or suborbital imagery of the surface of the ocean
can be challenging, due to contamination from
sunglint, a persistent feature in certain lighting
conditions. Here we propose a supervised learn-
ing approach to accurately detect whitecaps from
airborne imagery obtained under a broad range
of lighting conditions. Finally, we discuss poten-
tial applications for improving ocean and climate
models.

1. Motivation and background

Exchanges between oceans and the atmosphere involve fif-
teen times as much carbon as human activities emit by burn-
ing fossil fuels, and are crucial in regulating temperature
of the planet (Cavaleri et al., 2012). As water waves serve
as a boundary between the ocean and the atmosphere, the
understanding of wave processes is key to better model
our changing climate. In particular, wave breaking governs
many of the physical processes from air-sea momentum
to gas and heat fluxes (Sullivan et al., 2007; Fairall et al.,
2011). It was also shown to significantly increase albedo
and aerosol concentrations (through generation of whitecaps
and sea spray), the key variables in climate models (Lewis
et al., 2004; Frouin et al., 2001).

As waves break, they entrain air in the water column lead-
ing to the formation of foam patches known as whitecaps.
Analysis of wave breaking statistics is usually conducted by
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analyzing percentage of whitecap coverage of sea surface
(e.g. Callaghan & White, 2009). While this approach was
used to determine some of the relevant properties (e.g. en-
ergy dissipation rate), it does not provide information on the
properties of breaking kinematics. In (Phillips, 1985), wave
breaking statistics are analyzed in terms of distribution of
length of actively breaking waves per unit of the sea sur-
face area, A(cp), where ¢;, represents speed of the actively
breaking waves. The main advantage of this approach is
that moments of the A(c;) distribution are related to many
of the important physical quantities. Whitecap coverage is
in fact a function of the first moment of the distribution, and
many other properties (breaking induced drift, momentum
fluxes, and energy dissipation) can be derived from it.

Wave breaking is by nature temporally and spatially vari-
able, and is especially difficult to observe and characterize.
While the Phillips (1985) theory was established decades
ago, it is only in relatively recent years that A distribu-
tions were computed from high resolution airborne imagery
(Kleiss & Melville, 2010). Collected georeferenced images
of the ocean surface are first gridded into a Cartesian coordi-
nate system, pixels with brightness above certain threshold
are classified as whitecaps (Kleiss & Melville, 2011), and
whitecap kinematics are determined using Particle Image
Velocimetry (PIV) and/or optical flow methods. An issue
with this approach is that it can be difficult (depending on
the lighting conditions) to differentiate between sunglint
and whitecaps, which can contaminate the results.

Expected contributions In order to overcome this issue
and to further the understanding of the role of wave break-
ing in air-sea interaction processes, here we propose a data
driven approach that makes use of the recent development
of deep learning techniques for computer vision. Sunglint
and whitecaps have different spatial and temporal struc-
tures, which could be identified through neural network
approaches. These techniques have been shown to outper-
form traditional approaches in other vision-based tasks (e.g.
for autonomous vehicles Grigorescu et al., 2020). Due to
its ability to classify objects at pixel resolution with great
accuracy, the use of UNet model (Ronneberger et al., 2015)
is proposed in this work.
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2. Observations

Aerial images of sea surface obtained from several previ-
ous, ongoing and planned airborne campaigns conducted at
the Air-Sea Interaction Laboratory (SIO) will be used for
training and validation of the model. Millions of sea sur-
face images, obtained under a broad range of environmental
conditions, were collected over the course of these expedi-
tions. The database of aerial imagery will be georeferenced
and gridded in Cartesian coordinate system. The discretiza-
tion step (pixel size) depends on the altitude of the aircraft.
Therefore, in order to ensure consistency, all of the images
will be discretized with a resolution corresponding to the
highest altitude flight under consideration (generally in the
0.1-0.5 meter range). In order to label images for training
and validation, they will be segmented into whitecaps, water
surface, and sunglint according to the methods established
in (Kleiss & Melville, 2011), with manual correction of
sunglint where necessary.

Wave breaking is a function of currents, wind, and wave
statistics (with wind direction being the most important
quantity), which constrain the shape and direction of break-
ing waves. Most of the considered airborne measurement
campaigns were done in conjunction with in-situ measure-
ments which are able to provide detailed descriptions of
these quantities.

3. Processing of airborne images of sea
surface

Method for determining wave breaking statistics In
(Phillips, 1985), wave breaking statistics were defined in
terms of A(cp) distribution, defined as the length of active
breakers, per unit area, per unit of the breaker velocity (cp).
What is relevant for purposes of this proposal, is the fact
that the distribution is determined from motion of whitecaps
in two subsequent images.

Whitecap velocities are estimated using two subsequent
images (with a time step of 0.2 seconds) using the optical
flow method of (Liu et al., 2009). The method applies
initial downsampling of the image and gradually upsamples
it to the original resolution, which enables for accurate
computation of velocities for both fast and slow moving
breakers. A schematic showing a breaking wave is shown
in Figure 1. Based on a set of criteria (Kleiss & Melville,
2011), some of the pixels on the boundary of the whitecap
are classified as part of an actively breaking waves. They
(and their velocities) are indicated with red quivers.

Contamination of images by sunglint While the data pre-
sented in figure 1 were collected in near-perfect lighting
conditions, this is often not the case, as sunglint can con-
taminate large portions of the image. An issue that arises
from this is that sunglint can also be classified as an actively

breaking wave using the existing methods, especially in the
case of smaller scale breaking waves (see Figure 2 for an
example). The current approach for eliminating sunglint
is to ensure that the detected breaking waves are present
in subsequent images (e.g. over more than 0.4 sec). This
assumes that sunglint is typically short lived within a given
area, however this is not always the case. The exact amount
of persistent sunglint depends on cloud coverage, angles of
observation and of the Sun, and surface roughness. While
there are methods for eliminating sunglint by using band-
width information from hyperspectral imagery (Kay et al.,
2009), these methods were found to not be applicable for
differentiating between whitecaps and sunglint.
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Figure 1. A georeferenced sea surface image showing an actively
breaking wave. Breaking velocities are plotted in red quivers.

4. Applications of deep learning models

The proposed workflow for tackling the issue of detecting
sunglint from airborne imagery is discussed in detail below,
and is summarized as a flowchart in Figure 2.

In order to distinguish complex structures such as sunglint
and wave breaks, the use of a convolutional architecture such
as UNet is proposed. Originally developed for biomedical
image segmentation (Ronneberger et al., 2015), this popular
segmentation model can be trained to classify pixels of the
image individually, which is crucial for the proposed appli-
cation. To train and evaluate the model, images would be
labeled into three classes: water, whitecaps, and sunglint. To
assess the generalisation ability of the model, airborne data
would be split into two sets, containing data from distinct
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days. The training and validation data would be selected
from one, and the test data would be selected from the other
set. This is hoped to showcase that the model is capable of
filtering sunglint under various conditions.
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Figure 2. Proposed workflow. Auxiliary data (information on wind,
currents, and wave statistics) and airborne sea surface imagery will
serve as inputs. Note that the image contained high concentra-
tion of persistent glint, some of which was classified as actively
breaking waves using the existing approach.

In order to improve the models’ performance, various
loss functions (cross entropy, focal loss function Lin et al.
(2017)) will be employed, as well as hyper-parameter tuning
and dataset balancing. Image gradients, and image differ-

ences (with single or multiple time steps) could be added
as separate image channels to guide the model. As break-
ing waves with higher velocities are far more dynamically
significant, the models performance will be evaluated as a
function of exponent (probably fourth or fifth) of velocities
corresponding to miss-classified pixels.

The detailed information of the wave statistics, and wind
speed and direction would also be given to a model. This
would potentially be done by including additional image
channels, or by conjoining it as auxiliary data through
densely connected layers. If it is noticed that the model
is struggling with certain classes or configurations of auxil-
iary parameters, additional imagery with such features will
be labeled and included into the training sets in an iterative
way. While the use of UNet model is initially planned, the
use of other segmentation models (such as DeepLab, YOLO,
or Mask R-CNN, He et al. (2017); Redmon et al. (2016);
Chen et al. (2017)) would likely be considered to bench-
mark the approach. Furthermore, smaller scale glint and
whitecaps can have similar structures, and it is their time
evolution that could help to set them apart. To this end, use
of attention or recurrent models could be pursued as well.
Following successful training of the model, it is planned to
compare the suggested method to traditional approaches, the
codes and all other supporting information will be released
to the general public.

5. Summary and outlook

The applications of deep learning techniques for the detec-
tion and classification of breaking waves collected from
suborbital and orbital platforms are discussed in this paper.
In order to prevent further climate change and to mitigate
its effects, it is vital to model it as accurately as possible,
and improving coupling of the ocean and the atmosphere
would be a significant step forward. We hope that the pro-
posed approach will enable rapid and accurate removal of
sunglint from aerial and orbital remote sensing imagery.
This would enable for determination of A(c;) distributions
and other wave breaking statistics under a broad range of
environmental conditions. This in turn could lead to im-
proved parametrizations of wave breaking statistics and
better estimates of momentum fluxes, surface kinematics,
marine aerosols, heat and gas fluxes, albedo etc, all crucial
to global ocean and climate models, and to many biological
and chemical processes (transport of near surface pollutants
for example).
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