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Abstract
Rapid uptake of distributed solar PV is starting to make
the operation of grids and energy markets more chal-
lenging, and better methods are needed for measuring
and forecasting distributed solar PV generation across
entire regions. We propose a method for converting
time series data from a number of point sources (power
measurements at individual sites) into 2-dimensional
maps that estimate total solar PV generation across
large areas. These maps may be used on their own,
or in conjunction with additional data sources (such
as satellite imagery) in a deep learning framework that
enables improved regional solar PV estimation and fore-
casting. We provide some early validation and results,
discuss anticipated benefits of this approach, and argue
that this method has the potential to further enable sig-
nificant uptake of solar PV, assisting a shift away from
fossil fuel-based generation.

1. Introduction
Global installation of solar photovoltaic (PV) generation
continues to accelerate, and solar PV is now the fastest
growing form of electricity generation worldwide [5]. How-
ever, while this increasing uptake of solar is a welcome
development, high levels of solar PV can lead to complex
issues for our existing electrical grids.

An early example for this is the state of Western Australia,
which has one of the highest rates of solar uptake in the
world, with some neighbourhoods having solar on more
than 50% of homes [1]. The national energy market opera-
tor recently reported extensively on the issues that all this
distributed rooftop solar PV is starting to cause [17]:

Grid instability: many distribution feeders are now feeding
back into the grid for extended periods of the day, leading
to problems with voltage control and frequency stability.
System volatility: when cloud bands pass over neighbour-
hoods having high levels of solar PV, there can be significant
fluctuations in generation that must be handled by short-term
reserves and ancillary services.
New contingency risks: during disturbances, inverters may
trip for short periods, which at scale can be equivalent to a
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major generator temporarily going offline.
System restart: after blackouts, a certain level of load is
required to re-energise the system, and this can be difficult
to achieve when many neighbourhoods are in fact behaving
like generators.
Market volatility: high levels of distributed solar PV
(which affect net demand) can be difficult for market opera-
tors to forecast, and have made markets more volatile.

The above list is not exhaustive and many other issues exist
[3, 9, 10]. These issues are already starting to have a major
impact on system and market operation in Australia and
other markets where uptake is high. Given the rates of
uptake across many other geographies, it is likely that these
problems will start to emerge in many parts of the world in
the coming 5-10 years. If they are not addressed, there is a
risk that uptake of solar PV will be slowed, generation levels
of existing systems may be curtailed, and the full potential
for reducing greenhouse gas emissions may not be realised.

Fortunately, many of these issues can be addressed by emerg-
ing technologies and tools, such as energy storage and im-
proved solar PV estimation and forecasting. There has been
extensive work on forecasting solar output of individual sys-
tems, and forecasting approaches can range from numerical
weather prediction [8], to on-site sky imaging systems [7],
to the use of satellite imagery [6, 13], to standard statistical
forecasting tools [14], to (more recently) the use of machine
learning to develop probabilistic forecasts [19].

However, what is urgently required now is a better ability to
forecast distributed solar PV generation for entire regions,
such as a whole distribution feeder, or an entire market zone.
To date this has been difficult to do: there is no region in
the world that has direct access to metering and sensing
of all distributed solar PV systems; in many locations, the
actual number and generating capacities of all systems may
not even be known; and there is no ground truth against
which competing approaches may be evaluated. However,
an ability to estimate and forecast solar PV generation across
entire regions is becoming increasingly essential, since this
would allow system operators to better handle and plan for
many of the previously mentioned issues that distributed
solar PV is starting to introduce.

In this paper we present a proposal for a new approach to
estimation and forecasting of solar PV generation across
entire regions. We describe a method for generating solar PV
“maps” for large regions using only a small set of metered
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Figure 1. One day’s generation data for three example point sources (solar PV systems) is shown on the left. In any interval – here
represented by vertical red lines – power generation values can be represented geo-spatially (middle), in this case using markers at the
centers of the postcodes that these three systems are located in. A 2D solar PV map can be generated (right) by fitting a surface to the full
set of point sources (markers having black edges) and estimated boundary conditions (markers having red edges). Although this map
appears to resemble cloud cover, it was generated purely from a small set of individual point sources on the ground.

sites. These maps can then be used in conjunction with
other data sources (such as weather data or satellite imagery)
for more accurate forecasting of the total distributed solar
PV generation of an entire region. We further discuss a
number of additional potential use cases for this approach
and propose several further research directions.

2. Method
The method is guided by the fact that in most regions there
is availability of metered data from some subset of existing
solar PV systems – either through the network operator’s
metering infrastructure, or through third parties such as
inverter manufacturers or services providers. Even when
data for only a small number of PV systems is available, we
can use this data to generate 2-dimensional solar PV “maps”
that allow us to estimate and forecast solar PV generation
across the wider region that these systems are located in.

We use a dataset of solar PV generation values for homes
and businesses in Western Australia. The dataset contains
values for instantaneous solar power output (in W ) of 740
systems across the state, collected at 5-minute intervals over
the period March 2020 to March 2021. For each solar PV
system we know the postcode that it is located in, but not
its exact location (due to privacy preservation). As a result,
we can estimate the location of each system to within a few
kilometres of its true location, using postcode centres.

The process for converting the time series data of individual
solar PV systems into 2-dimensional maps is outlined in Fig.
1. The left figure shows normalised data for one day (2-Nov-
2020) for three example postcodes (6024, 6059, and 6015).
The middle figure shows a map of Perth, Australia, where
these postcodes are located (polygons in the map represent
postcodes). As can be seen, despite these postcodes being
fairly close to one another (approximately 10km apart),
generation profiles can vary significantly throughout the

day due to the passing of clouds.

For one interval (14:10), the instantaneous power generation
values can be represented as geo-spatially located values
(see markers in map). Such geo-spatially located values can
subsequently be converted into a full 2-dimensional “map”
by fitting a surface to them. There are many ways this can
be done; the resulting map shown in the right of Fig. 1 was
obtained by fitting a piecewise cubic, continuously differen-
tiable, and approximately curvature-minimizing polynomial
surface (available within scipy [15]).

When fitting such surfaces, care must be taken to consider
boundary conditions: cubic surfaces may rapidly reach large
positive or negative values when extrapolating beyond the
convex hull of the points used to fit the surface. Our existing
approach to handle this is to introduce a set of artificial
points along the corners and boundary of the area of interest
(marker with red edges in right of Fig. 1), and populate
them with values of nearest known points before fitting the
surface. There may be better ways to do this and we intend
to evaluate and explore this in future work.

These solar maps form just one component in the process
for forecasting either individual systems or the total dis-
tributed solar PV system of entire regions, as shown in Fig.
2. However, they may be a helpful way to integrate individ-
ual point sources with geospatial data that is often used in
solar forecasting (such as satellite imagery or weather data).

Some preliminary validation results are presented in Ap-
pendix A, and a first attempt at training a CNN with a set
of sequential solar maps is presented in Appendix B. A
side-by-side comparison of solar PV maps generated in this
manner and satellite imagery obtained from the Advanced
Himawari Imager is presented in Appendix C.
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Figure 2. Overview of solar PV estimation and forecasting components and processes. Forecasting of individual systems is in general a
well-studied domain, but solar PV maps may help to further improve forecast accuracy. Forecasting of distributed solar PV across entire
regions remains an open area of research, and solar PV maps may provide the missing link between sparse time series data and geospatial
external data sources. Applications with solid red borders are likely to benefit from deep learning-based approaches.

3. Potential Value and Future Work
This approach may be valuable for multiple reasons:

Leveraging deep learning-based approaches:
There is evident predictability in the movement of clouds
across a given region, and recently it has been shown that
deep learning based approaches on satellite imagery provide
valuable predictive power and outperform many existing
models commonly used today, for example using CNNs
[12], U-Net networks [2] or gated recurrent unit - recur-
rent convolutional networks [16]. Given that these solar
PV maps are generated using fitted surfaces, they can be
considered continuous and can be converted to any desirable
resolution. This enables detection of features at multiple
levels of complexity, and certainly at higher resolution than
the currently best available satellite imagery (which has a
resolution of 1km).

Regional solar PV estimation and forecasting:
There is no region in the world for which a complete set
of measurements of all distributed solar PV resources is
available. Many systems are not metered at all, or may be
net-metered, in which case it can be difficult to extract the
solar PV signal from net demand. It is therefore not possible
to assume that precise measurement of all distributed solar
PV will be possible. These solar maps, however, make
it possible to approximate the solar output of any given
system in the area covered by the solar map. It is realistic to
assume that the locations and sizes of all solar PV systems
are attainable – either through accurate record keeping or via
identification of solar PV systems from overhead imagery
[4, 18]. As shown in Fig. 2, by combining the locations
of all distributed solar PV resources with estimates of their
respective generation using these solar maps, it may become
possible to generate reasonably accurate solar PV estimates
and forecasts of distributed solar PV for entire regions.

Accuracy of realised power measurements:
While there are many models and forecasting packages avail-
able to estimate solar production at any given set of coordi-
nates, these are typically based on estimates of solar irradi-
ation. However, many factors can affect the conversion of
irradiation into actual solar power generation, such as sys-
tem tilt and orientation, local shading, losses, and impacts
due to the network. These solar PV maps are generated
using actual power measurements, meaning that many of
these additional factors are inherently already taken into ac-
count. For example, for some neighbourhoods, solar power
generation may be impacted by geographical features such
as hills or escarpments. Such impacts would likely not be
taken into account in solar irradiation-based models, but are
directly visible in the power output signal of individual solar
PV systems in that neighbourhood.

Forecasting individual (possibly un-metered) locations:
Any pixel in the map can be converted back to a normalised
value that can be used to forecast an individual system, even
if it is not being actively measured on the ground. Recent
advances in deep learning that outperform well established
statistical approaches may be used for this purpose [11].
At the same time, an individual system will be impacted
by regional dynamics of cloud movement, and therefore
integrating a solar PV map into the forecasting process is
likely to lead to gains in accuracy (and again, deep learning
based approaches are expected to perform best).

Correlation with satellite imagery:
Finally, we see some additional potential benefits to this
approach that may be of value beyond regional solar es-
timation and forecasting. It may be possible to use this
ground-based geospatial knowledge to super-resolve satel-
lite imagery in reverse – leading to higher resolution satellite
imagery that is of value to many applications beyond solar
power (e.g. agriculture). To date, we have only used the
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Figure 3. Validation of estimated solar PV generation for point
source in postcode 6016 (in middle of area of study)
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Figure 4. Validation of estimated solar PV generation for point
source in postcode 6023 (near outer edge of area of study)
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Figure 5. Validation of estimated solar PV generation for point
source in postcode 6007 (when it is one of five adjacent postcodes
that are withheld)

visible bands to compare satellite imagery to our solar maps
(see Appendix C), but most satellites provide multi-spectral
imaging across a wide range of wavelengths. The Advanced
Himawari Imager, for example, can sense wavelengths from
0.43µm − 14.4µm. A reverse analysis of the correlation
between generated solar power and individual bands at dif-
ferent wavelengths may provide some valuable insights.

A. Preliminary Validation
We conducted preliminary validation of whether the method
presented in Section 2 produces reasonable estimates of
solar PV generation at non-metered locations (i.e., locations
for which we don’t have time series data). To conduct the
validation we withheld one or more point sources from the
dataset, generated the 2D solar maps, and then extracted
the resulting values from the 2D map at the locations of the
withheld source(s), comparing these to the actual withheld
measured values.

We chose the following sets of point sources to withhold as
part of this validation process:

1. Postcode 6016, which is in the centre of our region of
study and surrounded by other point sources.

2. Postcode 6023, which is located near the outer edge of
our region of study.

3. A cluster of postcodes located close to one another
(6007, 6008, 6014, 6016, 6017) – to explore whether
a “hole” in the point sources used to generate the 2D
map would make an impact.

4. Full k-fold cross validation.

Figures 3 and 4 show the comparison over a full day of
withholding individual point sources in the center or at the
outer edge of the region of study. In general there appears
to be strong correlation between the estimated solar out-
put at a single location and the true measured values, with
these two point sources having a MAPE of 5.4% and 6.3%,
respectively.

Figure 5 shows the comparison for a single postcode (6007),
when it is one of several adjacent postcodes being with-
held. Again, the estimated data matches true data well, with
an average MAPE of 6.5% across all postcodes that were
withheld.

Finally, we conducted a full k-fold cross validation. For
k=5 – in other words, iteratively withholding groups of 20%
of the point sources – the average MAPE across all point
sources in all folds was 5.8%. For k=3, average MAPE
was also 5.8%. This suggests that only a small number of
point sources can be used to generate reasonably accurate
estimates of solar power generation across larger regions.

B. Preliminary Results
In a first attempt at using these solar maps in a deep learning
framework, a vanilla CNN-based network was trained on
sets of five sequential solar maps to output the subsequent
solar map – in other words, to forecast solar PV generation
for the whole region in the next interval. We used a single
convolution layer having a 3X3 kernel size with a rectified
linear unit activation. Adam optimizer was used for training
to minimize Mean Squared Error (MSE). Some example
results are shown in Fig. 6. Each row represents a sample
having five consecutive solar maps as inputs, and the ensuing
solar map as a target.

To compare the network’s prediction with the actual target
solar map, we use MSE, calculated on a pixel by pixel basis.
For this small study, a MSE of 0.035 (averaged across all
samples) was achieved.

Although this is very early work, we consider these results
encouraging and look forward to further exploring the use
of solar maps in deep-learning based distributed solar PV
forecasting.

C. Side-by-side Comparison: Satellite Images
and Solar PV Maps

An overview of the process for obtaining and comparing
satellite images with solar PV maps is presented in Fig. 7.
The region chosen for this study (Perth, Australia) is located
within the Southwest Interconnected System that covers part
of Western Australia. This region has high levels of solar
PV uptake which is introducing multiple challenges for the
network and market operators [17].

A side-by-side comparison of satellite imagery with solar
maps is presented in Fig. 8.



Figure 6. An example of how solar maps can be used in a deep learning framework. Each row represents a sample, where five consecutive
solar maps form the input and the subsequent solar map is the target. Even with the use of a simple network, good predictions can be
obtained.

Figure 7. Overview of region under study. Images shown are for Perth, Australia, on 2 November 2020. Satellite images were obtained
from the Japanese Advanced Himawari Imager and were generated using visible spectrum bands 1-3, which have a resolution of 1km.

Figure 8. Comparison of satellite imagery with solar PV maps generated in ten minute intervals on 2-Nov-2020 from 13:00 – 14:20. Cloud
cover in satellite images (white) appears to show a certain level of correlation with low levels of generation in the solar maps (blue/grey).
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