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Abstract
Effective environmental planning and manage-
ment to address climate change could be achieved
through extensive environmental modeling with
machine learning and conventional physical mod-
els. In order to develop and improve these models,
practitioners and researchers need comprehensive
benchmark datasets that are prepared and pro-
cessed with environmental expertise that they can
rely on. This study presents an extensive dataset
of rainfall events for the state of Iowa (2016-2019)
acquired from the National Weather Service Next
Generation Weather Radar (NEXRAD) system
and processed by a quantitative precipitation es-
timation system. The dataset presented in this
study could be used for better disaster monitoring,
response and recovery by paving the way for both
predictive and prescriptive modeling.

1. Introduction
Many problems in the environmental domain can be tack-
led with data-driven approaches. However, as with any
data-driven problem, the lack of available data limits the
development and applicability of environmental modeling
efforts. Furthermore, environmental modeling, specifically
probability-based environmental modeling, in contrast with
its dependency on data, suffers from data scarcity (Sit et al.,
2020). The data scarcity problem in the field is being iter-
ated in many studies (Ebert-Uphoff et al., 2017; Rolnick
et al., 2019) while the cardinality of publicly available pre-
processed datasets remains to be low.

1.1. Related Work

Studies rectify data scarcity one step at a time. CAMELS
being one of the oldest and widely used datasets in rainfall-
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runoff prediction tasks, provides a go-to mark for practi-
tioners working on flood forecasting for contagious United
States (Newman et al., 2015). CAMELS provides stream-
flow measurements from the nation-wide United States Ge-
ological Survey (USGS) river sensor network as well as
essential data points that are typically used in rainfall-runoff
modeling. Although CAMELS is not prepared with sta-
tistical predictive modeling in mind to support physical
modeling, another study, FlowDB (Godfried et al., 2020)
presents two extensive datasets with a machine learning
focus. The first dataset, following in CAMEL’s footsteps,
focuses on streamflow levels along with precipitation mea-
surements for flood forecasting purposes. FlowDB also
goes beyond streamflow with the second dataset on flash
flood events. The second dataset includes many aspects
of historic flood events, including river flow, precipitation
measurements, property damage estimations, injury data,
and event locations. While both CAMELS and FlowDB
involve precipitation measurements, their main focus falls
into the flood forecasting domain rather than pure rainfall
and precipitation context.

One benchmark dataset focusing on rainfall is Weather-
Bench (Rasp et al., 2020) which presents a dataset with a
focus on medium-range weather forecasting pre-processed
for deep learning applications. WeatherBench uses mea-
surements from ERA5 numerical reanalysis dataset (Hers-
bach et al., 2020). ERA5 combines a forecast model with
the available observations and provides estimations of the
atmospheric state. An alternative dataset using ERA5 is
RainBench (de Witt et al., 2020). In addition to numeri-
cal estimations from ERA5, RainBench also incorporates
simulated satellite data as imagery and global precipitation
estimates from IMERG(Huffman et al., 2015) to support
easier data-driven weather forecasting.

Even though the number of datasets published directly or re-
motely related to precipitation has been gaining momentum
for the last few years, the need for alternative environmental
monitoring datasets in order to ensure better climate change
modeling and planning is critical (Rolnick et al., 2019; Sit
et al., 2020). This study presents a rain event dataset con-
sisting of precipitation data between 2016 and 2019 from
the state of Iowa based on the NEXRAD radar network



IowaRain: A Statewide Rain Event Dataset Based on Weather Radars and Quantitative Precipitation Estimation

from seven radars positioned in and around the state. The
main goal of this dataset is to support climate change mod-
eling for effective disaster planning, response, and recovery.
While the dataset presented here does not necessarily define
a problem, it invites machine learning researchers to better
study precipitation and rainfall by providing the dataset and
various sample problems.

This paper is structured as follows; the introduction sec-
tion briefly presents the problem that this paper tackles and
covers previous works. The following section (Dataset) dis-
cusses the specifics of the dataset by describing how the raw
data was acquired and processed. Then it shares descriptive
statistics representing the dataset to form an understand-
ing while listing potential environmental domain problems
for that the dataset can be used. Lastly, in the conclusion
section, we share the final remarks.

Figure 1. A 2D rain rate map visualized for Iowa domain.

Figure 2. WSR-88D network radar coverages over Iowa domain.

2. Dataset
The IowaRain dataset comprises rainfall events from 2016
through the end of 2019 based on Iowa Flood Center’s
(IFC) Quantitative Precipitation Estimation (QPE) system.
The IFC QPE system, for the most part, relies on the Na-
tional Weather Service’s Weather Surveillance Radar-1988
Doppler (WSR-88D) network, which is operational at over
160 locations in the United States. WSR-88Ds complete
a scan every 4-5 minutes for approximately 80 nautical
miles (nm) range and produce data representing precipita-
tion within their respective domains. The generated QPE
products are fed to the Rainfall Event Detection system to
determine and separate rainfall events.

The IFC QPE system (Seo et al., 2019) uses raw data ac-
quired in real-time from seven WSR-88D radars (KARX in
La Crosse, Wisconsin; KDMX in Des Moines, Iowa; KDVN
in Davenport, Iowa; KEAX in Kansas City, Missouri; KFSD
in Sioux Falls, South Dakota; KMPX in Minneapolis, Min-
nesota; and KOAX in Omaha, Nebraska). In addition, the
system incorporates the specific attenuation algorithm (Seo
et al., 2020) to ensure the efficient employment of WSR
88D’s dual-polarization functions to improve QPE accu-
racy. To do so, it also determines melting layer locations by
using temperature soundings from the numerical weather
prediction models.

2.1. QPE System & Rainfall Event Detection

Using the WSR-88D network, the QPE system generates a
composite rain rate map (Figure 1) covering the IFC domain
that bounds the state of Iowa with buffer zones encircling
the state (Figure 2), with 5 minutes of temporal and 500
meters of spatial resolutions, using a variety of processing
algorithms. The unit of the product is millimeters/hour
(mm/hr).

These QPE products are matrices, named snapshots, with the
shape of 1057 x 1741 for each timestamp in [2016-2019]
that have their minute component divisible by 5. Even
though the QPE system produces maps for snow as well, the
IowaRain dataset makes a distinction and only comprises
rainfall events from April to October each year to avoid any
potential derangement.

Data acquisition and processing for IowaRain are summa-
rized in (Figure 3). The data manager module of the QPE
system handles the acquisition of radar observables (reflec-
tivity, radial velocity, spectrum, width, differential reflectiv-
ity, copular correlation coefficient, and differential phase)
as well as temperature and geo-potential height analysis
for various pressure levels from numerical weather predic-
tion models. After the data acquisition, the Data Manager
ensures that the data is complete.

Once the data is ready, it goes into a series of process-
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Figure 3. Overall summary of dataset acquisition and processing workflow.

ing sub-modules within the Data Processing subsystem for
quality control, rain rate estimation, merging of individual
radar data, and finally, rainfall product generation. In the
quality control step, the system essentially eliminates non-
meteorological data radars acquired, i.e., noise. After the
data quality check, the QPE system generates temperature
soundings for areas that radars cover by utilizing the numer-
ical weather prediction analysis and calculates the altitude
of the melting layer using 3D spherical coordinates. The
system then runs a series of algorithms to classify individ-
ual radar scans into one of convective and stratiform using
melting layer information.

The melting layer and classification of precipitation are then
used by an estimator to generate 2D rain rate maps separate
for each elevation. These individual elevation maps then get
combined by a non-parametric kernel function to build the
final 2D product for each radar scan. These 2D products
built from individual radars need to be combined into one
2D product for the Iowa domain at the last step. Beyond
the straightforward combination of various 2D maps into
one, this step needs spatial and temporal synchronization as
radars differ from each other with their spatial and temporal
coverages. By combining 2D radar scans according to char-
acteristics of the radar they originate from, the QPE system
produces a composite 2D rain rate map every 5 minutes.
The details regarding the QPE system and discussion about
its accuracy can be reviewed further in (Seo & Krajewski,
2020). The composite rain rate maps are plain data files that
need serialization for easier usage in data-driven tasks. To
facilitate that, the Rainfall Detection System is used to read
all the 2D plain rain rate maps into NumPy (Harris et al.,
2020) arrays and then to be normalized by dividing them
to 105, which records the presumably maximum observa-
tion in the Iowa domain. Since the matrices/snapshots the

QPE system produces have odd shapes, we resized them
to (1088, 1760) by adding empty elements to enable more
straightforward utilization of architectures that use iterative
downsampling. This design choice could easily be reverted
by removing extra rows and columns.

In order to create the final dataset, the serialized snapshots
go through rainfall detection criteria. The criteria for a set
of snapshots are defined as follows;

• All snapshots in the set must be consecutive

• The set must consist of at least ten snapshots

• Each snapshot must have at least 0.5 mm/hr precipita-
tion over %10 of the domain.

The final version of the dataset consists of gzip
files, one archive for each rain event. When any
of the gzip archives is opened in Python with
pickle, each file reads a triple that is structured as
(start date, number of snapshots, list of snapshots).
The IowaRain dataset described in this section and sample
code to open individual rainfall events can be found in the
Git repository at https://github.com/uihilab/IowaRain.

Table 1. Number of events and average event duration by year.

YEAR NUMBER OF EVENTS AVG EVENT LENGTH

2016 64 7.09 HOURS
2017 67 6.55 HOURS
2018 76 8.04 HOURS
2019 81 7.09 HOURS

https://github.com/uihilab/IowaRain
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Table 2. Shortest and longest rainfall events by year.

YEAR MIN EVENT LENGTH MAX EVENT LENGTH

2016 50 MINUTES 29 HOURS
2017 50 MINUTES 29 HOURS, 15 MINUTES
2018 50 MINUTES 33 HOURS, 55 MINUTES
2019 50 MINUTES 17 HOURS, 40 MINUTES

2.2. Dataset Statistics

The IowaRain dataset comprises 1242 rainfall events with
various durations. Since each year has different weather
characteristics, there is no normal distribution of rainfall
events year by year. While there is an increasing trend, the
number of events each year is not drastically different (Table
1). The length of the longest rain event in 2019 is lower than
the previous year by a large margin, while the minimum
event length stays the same per the aforementioned event
criteria (Table 2). A summary of events can be seen in Table
3, where we present average coverage of the domain and
average rain rate in mm/hr by month and year.

Table 3. Average rainfall coverage and average precipitation of
events by year and month.

YEAR MONTH AVG COVERAGE AVG PRECIPITATION

2016 APR 16.81% 0.6370
MAY 15.18% 0.6741
JUN 12.90% 0.9355
JUL 17.12% 1.3949
AUG 13.56% 1.0103
SEP 16.05% 1.0858
OCT 17.25% 0.8573

2017 APR 14.01% 0.5657
MAY 16.50% 0.7977
JUN 13.00% 1.0379
JUL 14.11% 0.9905
AUG 14.16% 0.9263
SEP 14.56% 0.6125
OCT 14.32% 0.6791

2018 APR 14.60% 0.3699
MAY 17.01% 0.9445
JUN 14.94% 0.9249
JUL 12.93% 0.8124
AUG 14.04% 0.7316
SEP 16.63% 0.9452
OCT 13.80% 0.4725

2019 APR 15.26% 0.5559
MAY 16.88% 0.7453
JUN 14.47% 0.6307
JUL 11.94% 0.8102
AUG 15.34% 1.0646
SEP 16.59% 1.0869
OCT 17.93% 0.6226

Even though in data-driven environmental modeling,
train/validation/test split is typically done by date like many
other time-series focused problems, we do not necessarily
put a constraint on that in this study. Since each rainfall
event carries different characteristics, we leave the dataset
splitting to other researchers’ preferences.

2.3. Sample Tasks

It is needless to say that weather and rainfall forecasting
typically are done by using more than just previous precip-
itation measurements. Nevertheless, IowaRain presents a
unique challenge in rainfall forecasting, that is, forecasting
rainfall events both short-term and long-term with limited
data access. This problem is very much like the video frame
prediction task, and since frame prediction is a well-studied
problem, extensions of the state-of-the-art architectures for
the video frame prediction problem could be explored with
IowaRain.

Another potential task that might be traversed is about the
dataset’s nature. For example, as IowaRain is based on
the WSR-88D network, it is prone to artifacts caused by
the noise that is confusing radars. Those artifacts could
be identified, and snapshots with artifacts could be labeled
as an extension, and a data cleaning focused unsupervised
approach could remove artifacts from snapshots.

One other outlook for IowaRain focuses on streamflow.
Rainfall-runoff forecasting is one of the most studied prob-
lems in hydroscience with both physical-based and machine
learning models. IowaRain enables practitioners and re-
searchers to study streamflow by combining IowaRain with
publicly available USGS sensor networks. By incorporat-
ing these datasets together, one could work on streamflow
forecasting for both gauged and ungauged locations.

3. Conclusions
This paper presents a rainfall event dataset, namely
IowaRain, generated from weather radars and various other
environmental analysis models. First, we briefly explained
how the weather products from several radars covering areas
in Iowa are acquired, processed, synchronized, and com-
bined into 2D rain rate maps with temporal and spatial
resolutions of 5 minutes and 500 meters, respectively. Sub-
sequently, we described how individual rain events were
determined and sampled how IowaRain could be helpful
by outlining potential use cases as a starting point. Even
though in its current form, the dataset covers only the state
of Iowa and 2016-2019 as the timeframe, the same method-
ology described in this paper could be employed to extend
the dataset for more comprehensive temporal and spatial
coverage for the entire US.

https://github.com/uihilab/IowaRain
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