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Motivation

* Seaice presence as an important variable for northern communities and
shipping companies

* Significant declining trend in Arctic sea ice extent over the past several
decades in response to warming temperatures driven by climate change

* Previously proposed ML approaches not generating a forecast that
propagates forward in time in a manner similar to a physics-based
forecast model



Seasonal Sea Ice Presence Forecasting

* Sequence-to-sequence learning approach to provide a spatiotemporal
forecast of the probability of sea ice at daily time scale

* Probabilistic approach

e Forecastrange: 1 to 90 day

* |ce presence:ice concentration> 15%

[1] Sutskever, I., et al. Sequence to sequence learning with neural networks. NIPS 2014.



Data

e Data source: ERAS - by European Centre for Medium-Range Weather Forecasts
(ECMWEF)

* Time scale : daily variables from 1979 to 2018
e Spatial scale: 30 km

* Input variables:

* Sea ice concentration e Surface sensible heat flux

* Sea surface temperature e Landmask

* 2m air temperature * Freezing degree days/ Melting
 Wind 10 meter U-component degree days

 Wind 10 meter V-Component

e Output variable:
* |ce presence probability



Study Region

* Hudson Bay, Hudson Strait and Foxe
Basin

Northwestern
Passages

* Home to several coastal
communities

* Year-round shipping to support
natural resource extraction
in Hudson Strait

Hudsen Bay

Canada



Basic Forecast model (Encoder-Decoder)

* Encoder: Generate an encoded state given 3 days historical input
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[1] Lin, T. Y., et al. Feature pyramid networks for object detection. IEEE [2] Kadupitige, JCS Kadupitiya, et al. "Survey on Deep Learning [3] Lin, M., et al. Network in network.arXivpreprint
CVPR 2017. Models for Time Series Data." 2020. arXiv.1312.4400, 2013.
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Augmented model architecture

e Climate normal of T2M, U10 and V10 over the forecasting period (90
days) as additional input

* Encode with Feature Pyramid Network and feed into custom RNN




Description of Experiments

* One model per month of year (12 models)
* 10 year initial training, followed by rolling forecast for annual prediction
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Binary Accuracies

Forecast Lead Day
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* Climate normal: mean(lce concentration > 15%)



Assessment of Operational Capability
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* Difference between the median of the open water season length of two
decades (1996-2006vs 2007-2017) in terms of number of days



Summary

* Proposed models improvement of binary accuracy up to 10% relative to
climate normal for breakup and freeze-up season

* Proposed models ability at 30 lead day to capture the trend in increase of
open water season at southern and western part of the region in contrast

to the climate normal

* The long-term objective is to provide reliable seasonal sea ice
presence forecast products within the Canadian Arctic Shipping Risk
Assessment System (CASRAS) developed by the National Research Council

Canada (NRC).
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