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Abstract

An open energy system (OES) enables the shared
distribution of energy resources within a com-
munity autonomously and efficiently. For this
distributed system a rooftop solar panel and a
battery are installed in each house of the com-
munity. The OES system monitors the State of
Charge (SoC) of each battery independently, arbi-
trates energy-exchange requests from each house,
and physically controls peer-to-peer energy ex-
changes. In this study, our goal is to optimize
those energy exchanges to maximize the renew-
able energy penetration within the community
using machine learning techniques. Future house-
hold electricity consumption is predicted using
machine learning from the past time series. The
predicted consumption is used to determine the
next energy-exchange strategy, i.e. when and how
much energy should be exchanged to minimize
the surplus of solar energy. The simulation results
show that the proposed method can increase the
amount of renewable energy penetration within
the community.

1. Introduction

In recent years, improvements in the technology and
reductions to the cost of distributed energy resources
(DERs) have led to a rise in popularity of on-site energy
sources and storage such as solar panels and batteries
(Creara, 2015). To utilize the energy generated by DERs
effectively, energy sharing methods between these DERs
has been proposed (Zhou et al., 2021; Spasova et al.,

2019; Mengelkamp et al., 2017; Wang & Huang, 2016).

By sharing electricity between DERs, it is possible to
minimize transmission distances, increase resilience to
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natural disasters, increase the amount of renewable energy
penetration, and reduce greenhouse gas emissions.

For stable operation of the power system, it is necessary to
maintain the balance between energy demand and supply.
Researches have been conducted on forecasts of energy
demand and supply in order to efficiently manage the
balance of power system (Aslam et al., 2020; del Real
et al., 2020; Kuo & Huang, 2018; Ruiz-Cortés et al., 2019).
While accurate prediction techniques have been proposed in
these studies, no concrete proposals have been made for
the control of power systems using the energy prediction
results. Especially in the control of DERs, batteries play an
essential role for stabilizing intermittent renewable energy
generation, and it is important to optimize the energy
balancing between these batteries using energy prediction
results.

In this paper, machine learning techniques are used
to predict next-day energy consumption to make SoC
forecasts of individual prosumers. Surplus energy is
predicted from state-of-charge (SoC) forecasts, and an
energy-exchange strategy is created to share surpluses
with neighbors. The open energy system (OES) is a
peer-to-peer energy-exchange technology operating in
a real-world microgrid in Okinawa, Japan (Werth et al.,
2018). Simulation is based on this real system and shows
that the individual optimal scenario for minimizing surplus
energy leads to an increase in both individual and overall
renewable penetration.

2. Microgrid Architecture and battery SoC
management

The OES is a bottom-up, distributed energy system that
mainly uses renewable energy sources. It consists of mul-
tiple subsystems with solar panels, batteries, and DC/DC
converters, which are interconnected by a communication
line and DC grid, as shown on the left side of Fig. 1. Each
subsystem has an energy-exchange scenario that describes
the SoC targets of the day, as shown on the right side of
Fig. 1. If the SoC is lower than the target, the subsystem
requests energy charging. If the SoC is higher than the tar-
get, subsystem requests energy discharging. The request
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is negotiated between the subsystems, and if the negotia-
tion succeeds, the energy exchange is executed between
the concerned subsystems. Instead of a system-wide opti-
mization, the OES uses best-effort control logic with local
optimization that does not require global knowledge.
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Figure 1. OES structure

3. Machine learning for future SoC target

The energy exchange among subsystems is indirectly con-
trolled through a scenario that describes the SoC target.
Currently, in the OES, SoC targets are set in accordance
with the daily demand of households with a constant value
for 24 hours. However, if the SoC target for each time slot
can be set independently, a more flexible energy-exchange
strategy could be executed in accordance with the energy
conditions for each time slot. In this paper, machine learn-
ing is used to predict future surplus amounts and times of
solar energy. Then, the SoC target is set to discharge the
battery before the surplus occurs, and energy exchanges are
executed on the basis of the SoC target. Fig, 2 shows the
scenario-generation algorithm using machine learning. The
scenario is generated for each subsystem using the following
method.
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Figure 2. Scenario generation algorithm using machine learning

1. Predict the energy consumption one day in advance
from the past energy-consumption data using machine
learning. Each vector is composed of 24 elements.

X1la+1 = X1lgy10, Xlag1,1, -, X1lgp123 (1)

2. Create energy generation one day ahead from the
largest generation date data.

X244+1 = X2441,0, X1lag1,1, -, X2g4123 ()

3. Predict the battery SoC one day in advance from the
energy consumption forecast and generation data.

Ya+1 =Yqr10.Yar1,1,- - Yagi,23 €))

Eo+ Y2 0(X2a01, — X1ag1)
Erun

Yip1,: = €]
where Ej is the battery remaining capacity at time
1 = 0, Eyyy is the battery full capacity.

4. Calculate the estimated surplus of solar generation
from the predicted battery SoC. The value obtained by
subtracting the estimated surplus from the predicted
value is the target of the battery SoC.

Esurplus,i = (Yd+1,i - 100) X Efull (5)

max(Esurplus,i)i:O~23
Erun

(6)

SOCtarget = Yd+1 -

5. Update the scenario and execute energy exchanges in
the local community.

4. Simulation Setup and Results
4.1. Input Data and Configuration

The period of September 1 to 20, 2018 is selected for the
simulation. The subsystem settings are 5.0 kWp for the solar
panel, 10.0 kWh for the battery, and 2.5 kW for the DC/DC
converter for energy exchange in each house. Okinawa’s
actual consumption data for six houses with 15-minute reso-
lution is used as energy consumption data, and Okinawa’s
actual sun radiation data (15-minute resolution) is used to
calculate solar generation.

4.2. Prediction by machine learning

Linear Regression, simple RNN (Elman-net), long short
term memory (LSTM) are used to predict future energy
consumption of each house. In this paper, GUI machine
learning tool called Nearal Network Console is used for
Elman-net and LSTM as shown in fig. 3, 4. Elman-net
consists of one hidden layer. LSTM consists of one hidden
layer and input gate, output gate, and forget gate. Original
hyperparameters of Nearal Network Console is used for
training.
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Table 1. MAPE of consumption predictions for September 21

| | Linear Regression Elman-net LSTM |

I ] i Housel 17.7% 70% 14.0%
House2 5.9% 1.9% 3.5%
House3 20.8% 50% 12.4%
House4 5.0% 54% 16.2%
House5 13.8% 55% 12.7%
House6 31.0% 11.5% 38.1%
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Figure 3. Model of Elman-net
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Figure 5. Consumption prediction results for Sept. 21

Figure 4. Model of LSTM

The forecast predicts the energy consumption and gener-
ation for the next 24 hours from the previous 24 hours.
Energy-consumption data from September 1 to 20 is used

- . . Table 2. MAPE of consumption predictions for September 22
as training data to predict hourly consumption of September

21 and 22. The consumption model trained each of the | | Linear Regression Elman-net LSTM |
six houses. Fig. 5, 6 shows the consumption prediction Housel 14.9% 59% 225%
results and Table 1, 2 shows the mean absolute percentage House?2 21% 1.7% 3.4%
error (MAPE) of the consumption predictions. Regarding House3 12.2% 47% 14.9%
the errors of consumption predictions, Elman-net shows the House4 6.0% 53% 17.5%
lowest errors for both days then Elman-net prediction results House5 11.1% 58% 13.6%
are used to make the future SoC predictions in next section. House6 43.8% 13.7% 33.4%
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House 1 House 4 4.4. Renewable usage

Solar generation is used to measure how much solar energy
could be generate and consume for each case. Table 3 shows
the simulation results. In Case 2, House 2 uses the new sce-

nario, and solar generation increases 2.8 kWh from Case 1.
As shown in Fig. 8, by discharging from 7:00 to 12:00, it is
House 2 House 5 possible to maintain charging space for the battery and delay
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the time that the battery is fully charged from after 13:00
to after 15:00. In Case 3, all houses use the new scenario.
There was an overall increase of 2.5 kWh in solar genera-
tion compared with Case 1. This system does not use global

200

———sTy

L i sssmmessens Parameters and only optimizes the individual subsystems,
but these results show that individual optimization is also
. House 3 House & effective for community-wide optimization.
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Figure 6. Consumption prediction results for Sept. 22 Community all 1194 1195 121.9
Housel 22.8 223 222

House2 19.1 21.9 21.0

. . House3 22.8 22.8 22.0

4.3. Scenario configurations Housed 170 15.7 174
Simulations were performed for three types of scenario House5 20.2 20.0 20.4
configurations. Case 1 uses the original scenario for all House6 17.4 16.9 19.0

six houses. The original scenario is based on the current
operating scenario in Okinawa, which set a fixed SoC target
in accordance with the energy demand of the household.
The SoC target of House 3, with high demand, is set to 70%;
the SoC target of House 4, with low demand, is set to 30%; original Scenario (house2)

and the other SoC targets are set to 50%. Case 2 uses a 3 100
new scenario for House 2 and the original scenario for the ) :;“xg;‘;;ge %0
other five houses. Case 3 uses the new scenario for all six

houses. The new scenario sets an hourly SoC target using
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Figure 7. New scenario Figure 8. simulation result of house2
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5. Conclusion

We conducted a simulation to see if optimizing the energy-
exchange scenario with machine learning would lead to an
increase in the amount of renewable energy generation based
on an OES that accommodates electricity using individually
optimized scenarios. Elman-net showed the best accuracy in
demand prediction. This simulation was done with a simple
machine learning model and limited number of data, but
the accuracy can be further improved by using long-term
data, variables such as temperature, and fine tune the hy-
perparameters. The demand forecasting results are used to
make energy-exchange strategies and the energy-exchange
simulation results showed that by optimizing the scenario
of individual subsystems, we could increase the amount of
renewable energy generated in that subsystem. In addition,
by individually optimizing all subsystems in the community,
the community-wide amount of renewable energy generated
can be increased. This shows that individual optimization
also leads to global optimization. For Housel and House2,
the amount of solar generation decreased compared to the
original scenario because the battery was charged with more
energy than necessary. This could be amended by improv-
ing the prediction accuracy and giving a margin to the SoC
target so that a surplus does not occur when prediction error
occurs.
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