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Abstract

Reducing the carbon footprint of the energy sec-
tor will be a vital part of the fight against climate
change, and doing so will require the widespread
adoption of renewable energy resources. Op-
timally integrating a large number of these re-
sources requires new control techniques that can
both compensate for the variability of renewables
and satisfy hard engineering constraints. Rein-
forcement learning (RL) is a promising approach
to data-driven control, but it is difficult to verify
that the policies derived from data will be safe.
In this paper, we combine RL with set-theoretic
control to propose a computationally efficient ap-
proach to safe RL. We demonstrate the method
on a simplified power system model and compare
it with other RL techniques.

1. Introduction

Distributed energy resources (DERs) such as wind, solar,
and energy storage systems are emerging as a crucial means
to achieve greenhouse gas emissions reductions (Steinberg
etal., 2017). However, integrating DERs into existing power
infrastructure while maintaining reliability proves to be chal-
lenging (Kroposki et al., 2017). For example, as DERs come
to dominate the energy supply, the uncertainty in wind and
solar generation will narrow the transient stability margins
of electric generators (Kundur et al., 1994). As a result,
the electric grid will be more prone to failures under large
disturbances such as line outages.

The flexibility and speed of electronically-controlled DERs
can be leveraged for control algorithms that achieve higher
efficiency in maintaining system stability. However, when
DERs are integrated at large scale, it is challenging to find
or implement the optimal strategy. Further, power systems
are a quintessential example of safety-critical infrastructure,
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in which the violation of operational constraints can lead to
large blackouts with high economic and human cost. Safe
reinforcement learning (safe RL) offers the possibility to
design efficient controllers for safety-critical applications
without the need for detailed power system models (Chen
et al., 2021; Glavic, 2019; Cao et al., 2020; Cui & Zhang,
2021). Safe RL can take several perspectives (Garcia &
Fernandez, 2015), but in this paper, we are concerned with
the ability to guarantee satisfaction of hard state and action
constraints during both exploration and execution of a pol-
icy. Since guaranteeing constraint satisfaction is impossible
without some degree of knowledge about the system (Wachi
& Sui, 2020), we assume that the system model is at least ap-
proximately known. Even with this model, the task at hand
may be too complex for traditional model-based control.

Contributions. We propose a safe and computationally ef-
ficient reinforcement learning paradigm using results from
set-theoretic control. Our method exploits the geometry of
polytopic robust controlled-invariant sets (RCIs), obtained
either from models (Blanchini & Miani, 2015) or directly
from data (Chen et al., 2019). We design a policy neural
network with an output layer that uses iterative linear pro-
jections to guarantee satisfaction of hard state constraints
during exploration and execution. Our method applies to
safety-critical control tasks which require computationally
efficient decision-making on short timescales. We apply the
technique to a transient stability problem in a small power
system model.

Approaches to safe RL that use weaker notions of safety
include restricting actions to those with Lyapunov stability
guarantees (Perkins & Barto, 2002; Berkenkamp et al., 2017;
Cui & Zhang, 2021) or robustness guarantees (Kretchmar
et al., 2001; Donti et al., 2021). However, stability does not
always translate to constraint satisfaction. Other approaches
use optimization-based “safety filters” to project an action
recommended by a policy network into a set of safe control
actions (Cheng et al., 2019; Wabersich & Zeilinger, 2021).
However, it may not be possible to solve optimization prob-
lems in real time. The work in (Zheng et al., 2020) takes a
geometric approach in order to guarantee safe exploration
without solving an optimization problem, but the resulting
“one-step” safety guarantee can still lead a system into states
from which no action is safe. Our work extends this one-
step safety guarantee to an infinite-horizon guarantee for a
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class of systems with bounded uncertainty.

2. Problem Model

Consider the discrete-time, discounted, infinite-horizon,
constrained robust optimal control problem given by

i t
X(H)l‘lllr(l) Ed() ; V J(x;,u,) (13.)
subject to, ¥ £: x;11 = f (X, us,dy) (1b)
X1 €XVd €D (1¢)

where x; € R, u, € R™, and d, € R4 are the system state,
control input, and exogenous disturbance, respectively, at
time #; J is a cost based on x; and u,; ¥ € (0, 1) is a discount
factor; and f describes the discrete-time evolution of the
system. The sets X C R" and U C R" represent constraints
on the state and action, respectively. We assume the distri-
bution of the disturbances is not known, as this is the case
for most power systems with multiple renewable energy
resources. Instead, we assume that d; lies in a bounded set
D and require that x,1 | must land in X for any d; € D.

In general, simple constraint sets X that may make engi-
neering sense could lead to (1c) becoming infeasible. This
requires the introduction of invariant sets as defined next.

Definition 1 (Robust controlled-invariant set (Blanchini &
Miani, 2015)). The set S is a robust controlled-invariant
set (RCI) for the system with dynamics (1b) and constraint
(1d) if there exists a feedback controller u, = m(x;) such that
if xo € S, then for all # > 0 and all disturbance sequences
d; € D, it holds that x;, € S.

If S C X, it is easy to see that ensuring safe operation
amounts to ensuring that if x, € S, then x,; € S. By defini-
tion, each state in the RCI can be associated with a nonempty
set of control actions that guarantee this property. This set
is called the regulation map:

Definition 2 (Regulation map (Blanchini & Miani, 2015)).
The regulation map Q : R" — R™ for a system with dy-
namics (1b), constraints (1c) and (1d), and RCI S C X is
a set-valued map from states to control actions defined as
follows.

Q(x)={u €U: f(x,,u;,d;) €S,Vd, €D} (2
:{MIEU:f(.xt7ut,0)€TCS} (3)

where T C S is the target set, equal to the RCI “eroded” by
the set of possible disturbances.

RCIs are typically described by polytopes, ellipsoids, or
zonotopes, a special class of polytopes (Maidens et al., 2013;

Zhang et al., 2020). Our approach is agnostic to the algo-
rithm used to devise the RCI, but we do require that it can
be represented as a polytope.

Let S C X be an RCI for a system with dynamics f, and let
7 : R" — R™ be a function parameterized by 6 that maps
states to actions. Then a feasible safe control problem is:

mein]Ed(,) Y v ) (4a)
t=1

subject to: x,11 = f(x,u;,d;), V550 €S (4b)
u=my(x) €Qxs), VX €8, V. (4c)

where X in (1) is replaced by S. Once S is computed from
either a conservative model or from data, the goal is to find
the controller 7y.

The key question is how to address (4c) in a way that can
be seamlessly integrated with standard RL techniques. To
this end, we pose two questions: First, what is an appropri-
ate function class for my? Second, how can we constrain
Ty (x) to the set Q(x) for all x € S in a manner that is com-
putationally efficient and differentiable? To answer the first
question, we choose neural networks with a custom output
layer. The design of this custom layer, which is the answer
to the second question, is the focus of the remainder of this

paper.

3. RCI Policy Network

We propose a policy network architecture that guarantees
safe operation by selecting actions from the regulation map.
In (Zheng et al., 2020), the authors propose a policy net-
work that selects actions by choosing convex combina-
tions of the vertices of the “one-step admissible” action
set {u € U: f(x,u) € X}. When X is replaced by S, the
one-step safety guarantee is replaced by an infinite-horizon
safety guarantee, but the geometry of the regulation map
(feasible set of control actions) becomes more complex. Our
contribution is to accommodate sets described by arbitrary
polytopes into the policy network architecture.

3.1. RCI Policy Network Architecture

The design of the policy network relies on several loose
assumptions about the dynamics and constraints of the sys-
tem.

Assumption 1. The dynamics of the system can be de-
scribed by the inclusion f(x;,u;,d;) = Ax; + Bu; + Ed,,d; €
D where d; is a noise term that can include (bounded) lin-
earization error if the true system is nonlinear (Boyd et al.,
1994).

The case of uncertainty in A, B, and E is readily handled,
and is not considered here (Blanchini & Miani, 2015).
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Assumption 2. The target set T C S and action set U are
polytopes given by T={x e R" : Fx < g} and U= {u €
R™: Hu <}

Under these assumptions, the regulation map Q(x) is a poly-
tope described as

Qx) ={ueR": F(Ax+Bu) < g,u € U} ®)
= {u cR™: {I;_IB} u< {g—;Ax] } (6)

As stated earlier, the set Q(x) is nonempty for all x € S.
While it is possible to add a projection layer in a neural
network (Agrawal et al., 2019), we seek a faster implemen-
tation. Moreover, methods that project directly onto Q(x)
run the risk of over-exploring the boundary of the set.

We generate a safe control action by taking a safe combi-
nation of base control actions, as follows. All x € S can
be described as a convex combination of the vertices of S.
That same convex combination can be used to generate a
safe control action when the weights are applied to a set
of carefully chosen base control actions. The base control
actions must be safe actions associated with each vertex of
S, as described in Proposition 1.

Proposition 1. Suppose x € S. Let {s; ?: | be the set of ver-
tices of S, and let V; € R™*Pi be the matrix whose columns
correspond to the p; vertices of Q(s;). Let Y; € R"*Pi
be the matrix whose p; columns are identically s;. Let
V=[Vi V. Y=1[n Y], and p =Y, pi.
Define the affine set a(x) = {a € R” : Yoo = x} and its in-
tersection with the unit simplex A, as A(x) = {o € a(x) :
a>0,Y"  o;=1}. Thentheset V(x)={Vo:oecAx)}
is contained in the regulation map Q(x).

Although V(x) is not, in general, equal to the entirety of
Q(x), we demonstrate through simulations that the set V(x)
provides an adequate set of control actions. The proof of
Proposition 1 is straightforward and is provided in Appendix
A. Figure 1 displays examples of X and S and illustrates
the relationship between Q(x;) and V(x;) for some sample
points x; € S.

3.2. Cyclic projections algorithm

What should be the outputs of a policy parameterized by a
neural network? The policy should output o, an element
of A(x), which provides a safe combination of base control
actions. This takes a difficult problem (map the outputs of
a neural network’s last hidden layer to the set Q(x)) and
reduces it to an easier problem (map the outputs of a neural
network’s last hidden layer to the set A(x)). The set A(x)
has a simple geometry: it is the (nonempty) intersection of
an affine set with the unit simplex. We need a differentiable
and efficient way to find a point in this intersection, since
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Figure 1. Left: Safe set X and RCI set S for an example system
and the positions of four points inside S. Right: the set of safe
actions Q(x;) at x; and the subset V(x;) C Q(x;) that is used by our
algorithm, as well as the full action set U.

the mapping is attached to the output of a neural network
and must be implemented in real time. Since A(x) is an
intersection of convex sets, we can efficiently find a point
in the intersection of these sets using cyclic projections
(Bregman, 1967) as described in Algorithm 1.

We initialize from 8 € R”, which is the output from the last
hidden layer of my and which represents a set of weights
that may be infeasible (Y8 # x or B & A,). Projection onto
each of the convex sets is computationally efficient and
differentiable. Solving this problem in the output layer of
the policy network allows the network to choose a safe
action u = Vo, o0 € A(x), just by specifying f3.

Algorithm 1 Efficient cyclic projections to A (x;)

Require: State x, initial weights f3, tolerance € > 0
Ensure: o € A(x)
1: @ « softmax(f) {Initialize in A, }
2: for k=0: kpax do
3:  Ilteratively project: A, — a(x) — RE — A, until con-
vergence
4: end for

The cyclic projections algorithm will converge since all sets
are convex (Bregman, 1967). When the initial distance
|P(Y &® —x)||2 is small, Algorithm 1 converges in a few (<
10) iterations. In order to incentivize efficiency, this distance
is added as a penalty in the reward function. Simulation
results show that this penalty is effective in encouraging
efficiency.

Since each projection step is differentiable and can be per-
formed quickly, Algorithm 1 can be integrated seamlessly
into the output layer of the policy network. During training,
it is possible to back-propagate through Algorithm 1 in order
to tune not just the choice of initial weights  but also the
choice of final weights o with respect to the policy parame-
ters 0. Details of this algorithm are provided in Appendix
B.
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Figure 2. Illustration of the policy network architecture and its
relationship to the environment.

4. Simulations
4.1. Power System Example

Because of space constraints, we consider a simplified single
machine-infinite bus power system (Machowski et al., 2008)
where the generator bus includes a synchronous electric
generator, a DER, and a fluctuating net load comprising a
load and/or variable renewable energy supply (Fig. 3). The
rotor angle dynamics of the generator are given by the swing
equations in discrete time, where At is the time step:

Or1 =6 + w1 At (7a)
Moy 1 =May — (Ksind +Dawy, —u,+d;)Ar  (7b)

where 8 is the rotor phase angle measured relative to the
infinite bus, @ is the deviation of the generator frequency
from 60 Hz, u is the control input (real power injection from
DER), and d is an exogenous disturbance in the form of
fluctuating net real power demand. The parameters M, D,
and K are the inertia, damping, and synchronizing power
coefficients, respectively. The internal dynamics of the DER
occur on much faster timescales and are not modeled.

The objective of the DER is to modulate its real power
output u, to balance transient stability enhancement with
control effort, subject to the constraints of the system. Tran-
sient stability is aided by keeping 6 and @ close to their
nominal values (taken to be zero without loss of generality).
The state at time ¢ is x; = [5, co,] T. The constraint x; € X
is a box constraint which includes an interval constraint
on &, to enforce transient stability margins and an interval
constraint on @y to protect generators and other equipment.
The interval constraints #, € U and d; € D represent the
power capacity limits of the DER and net load variations,

Generator @

Net load

@ Infinite bus

Figure 3. Illustration of the single machine-infinite bus power sys-
tem under consideration.
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Figure 4. Training results per episode over 20 training trials
(min/avg/max). Left: Episode reward. Middle: Maximum ab-
solute rotor angle. Right: Average absolute rotor angle.

respectively. The sets X and S for the system are shown in
the left pane of Figure 1.

4.2. RL Algorithm

To train the policy network, we use the Deep Deterministic
Policy Gradient (DDPG) algorithm (Lillicrap et al., 2016).
Implementation details are provided in Appendix C. For
comparison, we also train a policy network that does not
have built-in safety guarantees. Instead, the cost function
for training this policy network includes a penalty term for
state constraint violations. The results show that even with
a soft penalty, constraint violations persist throughout both
training and testing. Figure 4 compares the training perfor-
mance of the two networks in terms of rewards, maximum
rotor angle per episode, and average rotor angle per episode.
Figure 5 compares some time-domain test trajectories re-
sulting from the control policies of the RCI and generic
policy networks. We found that the average number of Al-
gorithm 1 iterations decreased from 10 to 7 over the course
of training, demonstrating (increasing) efficiency through-
out. All code used to generate these results is available at
github.com/dtabas/safe-rl.

5. Conclusions and future work

Safe RL applied to power system operations has the poten-
tial to contribute to the widespread adoption of low-carbon
energy sources. In this paper, we propose a novel policy
network architecture for computationally efficient safe RL
in power systems. Our approach leverages set-theoretic
techniques to provide an efficient and differentiable means
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Figure 5. Test results. Left: rotor angle trajectories, min/avg/max
over 20 trained networks. Right: Control actions for a single
trained RCI policy network, along with the safe control set Q(x;)
and subset V(x;) for each state visited along the trajectory.

of guaranteeing that state trajectories will satisfy hard con-
straints. We demonstrate the proposed method on a simple
power system model, and show that safe operation is main-
tained throughout training. The proposed policy network
architecture outperforms conventional RL methods in terms
of safety. In future work, we will investigate the robustness
of the policies to topology changes. We will also propose
an alternative closed-form safe output layer.
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Appendix
A. Proof of Proposition 1

First, we restate the definition of regulation map. The regu-
lation map at a state x € S is given by

u

Q(x):{ueRm: ﬁf u<

g— fo} } ®)

where A is the state transition matrix, B is the input-to-
state matrix, F and g define the targetset TCS:T={x €
R" : Fx < g}, and H and i define the control set U :=
{u € R™: Hu < i}. As stated earlier, the case of bounded
uncertainty in A and B arising from noise or nonlinearities
in the dynamics is readily handled as an extension and not
considered here (Blanchini & Miani, 2015). The proof of
Proposition 1 is stated next.

Proof. FixxeSandu € V(x) :={Va:acA(x)}, so that
u= ):le o;v;, where v; is the i column of V, for some
o € A(x). We will show that u € Q(x). Evaluating the left-
hand side of (8) yields

e ke
Ll W
Lelw

where (11) follows from the fact that foreachi=1,...,p,
(8) holds with u = v; and x = s;, since v; is a vertex of (and
therefore an element of) Q(s;), the set of safe actions at s;,
a vertex of S. Continuing from (11), we have

)

)4 . B .

Y a [8—5/*&} _ zflagffalms,)} (12)
_ g—FA%ilO@S,’] (13)
_ |8 _; Ax} (14)

where (13) follows from the fact that Z” 10 =1, and (14)
follows from the fact that for a € A(x), Y7, otis; = x. By
the definition (8), we conclude u € Q(x). Since u was arbi-
trary, we conclude that V(x) C Q(x) for any x € S. O

B. Cyclic projections algorithm

Algorithm 2 describes in more detail the cyclic projections
algorithm that is employed at the output layer of the policy
network. Step 4 is the Euclidean projection onto the affine
set a(x, ). For efficiency, we divide the projection onto the
simplex into two steps. Step 5 is the Euclidean projection
onto the nonnegative orthant R” | while step 6 is the pro-
jection from R’ to the unit simplex A, with respect to the
relative entropy function D(x,y) = Y7, (y; — x; + x;In ’y%)
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Algorithm 2 Efficient cyclic projections to A (x;)

Require: State x;, initial infeasible weights f;, tolerance
>0
Ensure: o; € A(x)
1: P:=YT(YyYT)~! {Projection matrix}
2: o « softmax(B;) {Initialize in A, }
3: for k =0: kpax do

4:  EX+ (I—PY)of + Px; {Project onto a(x,)}

50 nfe max(%’ﬁ()) {Project onto R” }

6:  off! HTTI"‘\M {Project from R” to A, (Bregman,
1967)}

7 if [|of T — EX|| < € then

8: Return off*!

9: endif

10: end for

(Bregman, 1967). The reason for this approach is that steps
5 and 6 are each computationally efficient, whereas projec-
tion from all of R” to the unit simplex is a more difficult
problem. Using the softmax operation in place of steps 5
and 6 displayed worse convergence in simulations, but the
softmax is still used to generate an initial point inside one
of the target sets (the unit simplex).

C. RL algorithm implementation details

The policy network architecture consists of 2 hidden layers
each with 256 nodes, and an output layer generating safe
actions as described in Section 3. We train the policy net-
work for 200 episodes, where each episode consists of 100
time steps (5 second duration). Each episode is initailized
to a random starting point in the interior of the invariant
set, and during each episode, the system is subjected to
persistent, randomly generated disturbances. To generate
the range of results displayed, we perform 20 “trials” train-
ing the network from scratch. Simulations were built upon
an existing DDPG implementation from the GitHub repo
github.com/higgsfield/RL-Adventure-2, and
the power system model was built upon the OpenAl gym
environment pendulum—vO0.

The reward function is given by J(x;,u;) = x Qx; + u! Ru; +
¢t, where Q and R are diagonal matrices representing costs
on states and actions and ¢; is a penalty term. For the RCI
network, ¢; incentivizes the network to produce intial points
a? in Algorithm 1 that are close to the target affine set a(x;),
in order to speed up convergence of the cyclic projection
algorithm. This penalty is given by the Euclidean distance
to the affine set, ¢, = ||[P(Y &® —x;)||2, where P is defined in
Algorithm 2.

We compare the performance of the RCI policy network to
that of a policy network with a soft penalty on constraint

violations in place of the set-based safety guarantee. For this
baseline method, the penalty term is given by ¢; =0 if x; € X
and ¢; = u(x;) else, where 1 (x;) is constant or increasing
with respect to the extent of the constraint violation.



