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Abstract
Projections of future climate change to support
decision-making require high spatial resolution,
but this is computationally prohibitive with mod-
ern Earth system models (ESMs). A major chal-
lenge is the calibration (parameter tuning) pro-
cess, which requires running large numbers of
simulations to identify the optimal parameter val-
ues. Here we train a convolutional neural network
(CNN) on simulations from two lower-resolution
(and thus much less expensive) versions of the
same ESM, and a smaller number of higher-
resolution simulations. Cross-validated results
show that the CNN’s skill exceeds that of a clima-
tological baseline for most variables with as few
as 5-10 examples of the higher-resolution ESM,
and for all variables (including precipitation) with
at least 20 examples. This proof-of-concept study
offers the prospect of significantly more efficient
calibration of ESMs, by reducing the required
CPU time for calibration by 20-40 %.

1. Introduction
Quantitative projections of future climate change, with a
robust estimate of their uncertainty, are critical to inform
policy and decision-making. Earth System Models (ESMs)
forced by emissions scenarios are the primary tool used to
provide these projections, and modern ESMs incorporate
sophisticated representations of Earth system processes, are
physically self-consistent, show high fidelity with obser-
vations, and are computationally efficient enough to run
large ensembles (Kay et al., 2014; Danabasoglu et al., 2020;
Gent et al., 2011). However, most ESMs participating in
CMIP6 have spatial grid resolutions of O(100 km) on a
side, which is often much too course to provide useful infor-
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mation to stakeholders; for example, spatial resolution finer
than 10 km is required to study hydrologic change at the
scale of small watersheds (Erler et al., 2019). Limited-area
versions of ESMs called Regional Climate Models (RCMs)
are used to downscale ESM simulations to resolutions as
fine as 1 km, but this approach creates other problems such
as physical inconsistencies between the driving model and
RCM, scale mismatches at the lateral boundaries, and com-
putational inefficiencies limiting ensemble size (Racherla
et al., 2012; Luca et al., 2016). Statistical downscaling can
be effective, but omits small-scale feedbacks and implicitly
assumes stationarity in the downscaling model (Lanzante
et al., 2018). Machine-learning based downscaling meth-
ods may overcome some of these limitations (Beusch et al.,
2020; Heinze-Deml et al., 2020).

It is clear that the optimal solution is to build global ESMs at
resolutions of O(10 km), but these models are computation-
ally prohibitive to develop and calibrate (Schär et al., 2020).
Emulation offers an efficient alternative, by using a simpler
empirical model to learn the behaviours of a more complex
dynamical model (Kennedy & O’Hagan, 2001). Modern
statistical learning methods have enabled more sophisticated
emulation of ESMs, however, most previous studies have
focused on simplified outputs, either through spatial aver-
aging (Fletcher et al., 2018; Lee et al., 2011), or by first
applying dimension-reduction methods like PCA (Salter &
Williamson, 2019). Several studies have built emulators
that represent the spatial structure of the ESM response;
however, these tend to emulate one output variable at a time
(Salter et al., 2018; Regayre et al., 2018).

Here we present a novel application of a statistical learn-
ing technique popular in computer vision to emulate global
output from a higher-resolution ESM as a function of a
relatively small number of input (calibration) parameters.
We demonstrate that the emulator can be trained effectively
using a combination of inexpensive lower-resolution exam-
ples from the same ESM, and a relatively small number of
high-resolution examples. The fully-trained emulator is able
to accurately predict the impact of the calibration parame-
ters on full global maps of a suite of seven output variables
from the ESM, including precipitation. This represents a
potentially significant pathway to expediting the calibration
process for future generations of higher-resolution ESMs.
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Figure 1. Coefficient of variation for the difference maps of an-
nual mean total precipitation (mm/day) for the 100 realizations of
the perturbed parameter ensembles of CESM-CAM4 run at three
horizontal resolutions: (a) f09, (b) f19 and (c) f45.

2. Data and Methods
2.1. Earth System Model

The ESM studied here is the Community Earth System
Model (CESM) Version 1.0.4 (Gent et al., 2011). All sim-
ulations include interactive atmosphere and land surface
models, and prescribed climatological ocean surface temper-
atures and sea ice representative of the pre-industrial period.
The atmospheric model (Community Atmosphere Model
Version 4, CAM4) represents aerosol-radiation interactions,
but not aerosol-cloud interactions, and employs a finite-
volume dynamical core (Collins et al., 2006). CAM4 is
run here at three horizontal resolutions: a higher-resolution
0.9◦ × 1.25◦ latitude-longitude grid (henceforth f09), which
is the same resolution used in the CESM simulations that
were contributed to the CMIP5 project (Taylor et al., 2011).
Two less computationally expensive configurations are also
employed here, a medium-resolution version at 1.9◦ × 2.5◦

(f19), and a lower-resolution version at 4◦ × 5◦ (f45).

To investigate the impact of resolution on model calibration,
we conduct a 100-member perturbed parameter ensemble
(PPE) at each of the three spatial resolutions. In each PPE
the same set of nine uncertain parameters in CAM4 are
perturbed using a set of values selected by Latin Hyper-
cube Sampling. The nine parameters are identical to those

perturbed by Fletcher et al. (2018) and they relate to the
representation in CAM4 of the radiative forcing of anthro-
pogenic aerosols, cloud amount, cloud optical properties,
and convective precipitation. Each realization is integrated
for three years, and the outputs are averaged over all 36
months to reduce the influence of atmospheric internal vari-
ability.

To quantify the impact on total precipitation (PRECT)—a
scientifically important, and highly spatially variable, output
in ESM simulations—from perturbations to the nine input
parameters, Fig. 1 shows the coefficient of variation (i.e., en-
semble spread) at the three resolutions, where heavier shad-
ing represents greater variability within the ensemble. The
regions of greatest variation are found in the (sub)tropical
Pacific and Atlantic, where the parameter perturbations af-
fect equatorial deep convection, and cloud formation in the
subtropical dry zones off the western boundaries of Africa,
North and South America. An important finding is that the
magnitude of this variation increases at finer resolutions,
suggesting that not all of the information about the influence
of the parameters on precipitation is available at lower reso-
lutions. In contrast, the impact of parameter perturbations
on net top-of-atmosphere radiative flux (FNET) is largely
insensitive to resolution because of the much lower spatial
variability in that field (not shown).

The atmospheric response to perturbing the parameters oc-
curs on a timescale of hours to days, which means that
in this experimental configuration with prescribed ocean
temperatures a spin-up period is not required; however, a
spin-up period of multiple decades would likely be required
if an interactive ocean model was coupled to CAM4, to
allow the model’s radiative balance to re-equilibrate. The
lower-resolution configurations of CESM have spatial grid
resolutions of 46×72 and 96×144, respectively. To ensure
that the output from all three resolutions can be easily in-
corporated into the CNN, the lower resolution outputs are
first upsampled using bilinear interpolation to match the f09
grid size of 192×288.

2.2. Convolutional Neural Network

We emulate spatially-resolved outputs from CESM as a func-
tion of the nine uncertain atmospheric parameters using a
generative convolutional neural network (CNN), as depicted
in Fig. 2. CNN models are very common in computer vi-
sion applications and are ideally-suited to spatially-resolved
targets. Given sufficient training examples, the CNN learns
a statistical representation of the underlying physical equa-
tions that relate changes in the parameters to the outputs.
The CNN architecture includes seven layers to map the 9d
input feature vector to global maps of seven output vari-
ables (192 × 288 × 7). With the exception of the final
convolution (conv) layer, all depicted layers are followed
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Figure 2. The architecture of the generative convolutional neural
network used to predict seven spatially-resolved outputs of an ESM
controlled by nine atmospheric parameters. fc: fully-connected
(dense) layer. conv: transpose convolution with a kernel size of
5×5.

by batch normalization (Ioffe & Szegedy, 2015) and a leaky
rectified linear unit (Maas et al., 2013). The 9d input is first
projected to a 13,824d feature space using a fully-connected
(fc) layer. The size of the 13,824d feature space is selected
to allow a simple reshaping to a volume 6×9×256, which
facilitates a series of transpose convolutions—sometimes
referred to as deconvolutions—using a kernel size of 5×5.
The first transpose convolution uses a stride of 1, and all
following transpose convolutions use a stride of 2, which
doubles the spatial dimensions of the feature space so that
after five convolutions the spatial resolution of the feature
space matches the higher-resolution CESM grid (192×288).
The final transpose convolution uses 7 output channels to
match the desired number of output variables being pre-
dicted, which includes low cloud fraction (CLDL), short-
wave cloud forcing (SWCF), net top-of-the-atmosphere ra-
diative flux (FNET) and total precipitation (PRECT). In this
paper, we focus exclusively on FNET and PRECT, which
are representative of the general features of the full results.
The CNN was implemented in TensorFlow 2.2 using the
Keras API.

2.3. Training and Validation

To evaluate the CNN’s ability to emulate the ESM, the CNN
was trained in cross-validation mode using 80 randomly
selected high-resolution (f09) samples, and tested on the
remaining 20 samples. Since we are interested in calibrating
CESM’s response to the nine input parameters, we train
the CNN to predict the difference between the outputs of
each perturbed model and the reference configuration with
all parameters set to their defaults, which we refer to as
difference maps. This method of learning the residual can
potentially lead to improved training performance (He et al.,
2016), where the intuition is that, in the extreme case when
the perturbed CESM equals the default CESM, it is easier
for the network to learn a zero mapping than an identity

mapping. A single training example comprises an input
vector x representing the nine parameter values, and a target
set of difference maps Y. We denote the predicted set of
difference maps as Ŷ. Prior to training the CNN, x and
Y are normalized to the range [0, 1] by subtracting the
minimum value and dividing by the maximum value. This
was performed on a per-channel basis (i.e., per parameter
for the input vector, and per output variable in the set of
difference maps) using all 100 samples.

Training a neural network involves minimizing a loss func-
tion representing the error between the predicted and target
outputs by iteratively updating the network parameters using
gradient descent and backpropagation (Goodfellow et al.,
2016). Since the selection of an appropriate loss function is
a subjective element of the CNN architecture for each appli-
cation, two different loss functions are compared here. The
first uses the mean squared error (LMSE), which is com-
monly used in computer vision applications (Ledig et al.,
2017; McNally et al., 2020). The second is a new loss
function (LSS) inspired by a spatial skill score metric (SS)
that is often used to quantify the accuracy of climate mod-
els at reproducing the spatial pattern, and amplitude, of a
reference field (Pierce et al., 2009). The accuracy of the
predictions is evaluated using the MSE and SS between
the difference maps simulated by CESM and the difference
maps predicted by the CNN.

3. Results
3.1. Overall performance of the CNN

We begin by showing how well the CNN, trained using the
LSS loss function, is able to predict the total precipitation
field for 20% of unseen high-resolution (f09) outputs of
CESM when trained on the remaining 80%. Looking at
a randomly-selected difference map, Figs. 3a,b show that
the CNN achieves a high degree of learning about the rela-
tionship between the input parameters and changes to the
spatial outputs in CESM. This includes relatively complex
features of the precipitation response to parameter changes;
for example, enhanced monsoon circulations over east Asia,
reduced precipitation in tropical South America, and the
latitudinal separation within the ITCZ in the tropical eastern
Pacific and Atlantic basins. We emphasize that the CNN is
provided with only the nine parameter values as an input,
and predicts all seven output fields in a single calculation
(Fig. 2).

This qualitatively high performance for a single case and
a single variable is reinforced by the quantitative metrics
averaged over all test cases and all seven output variables:
the CNN produces low average MSE (4.07e-4), and a high
average skill score (0.817). Precipitation represents the most
challenging target for the CNN because of its very high



Efficient calibration of Earth System Modelsmanuscript submitted to Geophysical Research Letters

(a) PRECT (b) MSEk: 1.91e-4, 1–SSk: 0.817

Figure 2: Global mean annual mean total precipitation (normalized, dimensionless) for a ran-

domly sampled test case. The left panel shows the original simulations from CESM, and the right

panel shows the predictions from the CNN trained with the (LSS) loss function. The values be-

low each panel in the middle and right columns show the mean-squared error (MSEk), and the

skill metric (1–SSk), compared to the original simulation in the left column.
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and showing the mean would introduce smoothing that conceals some of the finer-178
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CNN, which we emphasize is provided with only the 9-dimensional vector of param-182

eter values as an input, and generates all of these predicted fields as a single output183

array (Fig. 1). These maps indicate qualitatively that the CNN has achieved a high184

degree of learning about the relationship between the input parameters and changes185

to the spatial structure of the output fields (di↵erence maps) from CESM.186

The four output variables shown in Fig. 3 are chosen because they encompass a187

variety of targets for the CNN, and help to illustrate the impact of the two di↵erent188

loss functions on the CNN’s performance. For example, the net top-of-atmosphere189

radiative flux (FNET) is a rather spatially homogeneous field and the accuracy190

of the two CNN predictions is similar, with the SS-based loss function producing191

a skill score compared to the original simulation that is 2% higher than with the192

MSE-based loss function (Fig. 3, second row). In contrast, simulated total precipi-193

tation (PRECT) exhibits very high spatial variability in the f09 simulation, and the194

corresponding CNN prediction using the SS-based loss function performs 25% bet-195

ter than the MSE-based loss function (Fig. 3, third row). Finer-scale details of the196

impact of parameter changes on the precipitation field, for example to monsoon cir-197

culations over India and Myanmar, reduced precipitation in tropical South America,198

and the latitudinal separation within the ITCZ in the tropical eastern Pacific and199

Atlantic basins, are much more clearly resolved using the SS-based loss function.200

Averaged over all seven outputs, the cross-validated improvement from using the201

SS-based loss function is 5% in terms of MSE, and 15% in terms of SS, compared202

to the MSE-based loss function (Table 1). The strong suggestion is that the SS-203

based loss function enables the CNN to better learn the spatial details of the output204

fields from CESM because it incorporates information about the spatial correlation205

and variability of these physical quantities in the training process.206
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Figure 3. Global mean annual mean total precipitation (normalized,
dimensionless) for a randomly sampled test case. The left panel
shows the original simulation from CESM, and the right panel
shows the prediction from the CNN trained with the (LSS) loss
function. The values below the right panel show the mean-squared
error (MSEk), and the skill metric (1–SSk), for this individual
case compared to the original simulation in the left column.

spatial variability, and its mean skill score over all cases
is somewhat lower than the multi-variable mean (0.727).
However, as shown in the single case in Fig. 2, the CNN
still represents the spatial variations from the original CESM
simulation with high fidelity.

The choice of the loss function used to train the CNN has a
major impact on performance. Training on LMSE reduces
the average skill across all seven output variables by 15%,
and for precipitation the skill is reduced by 25%. The strong
suggestion is that LSS enables the CNN to better learn the
spatial details of the output fields because it incorporates
information about the spatial correlation and variability of
these physical quantities in the training process.

3.2. Predicting high-resolution cases using
lower-resolution data

We next describe a practical application of the CNN-based
emulator that follows the approach of Anderson & Lucas
(2018) to extract information about a higher-resolution ESM
from simulations from less expensive lower-resolution ver-
sions of the same ESM. We use the same CNN architecture
as above (Fig. 2), but this time the training data includes all
200 of the lower resolution (f19 and f45) cases, in addition
to a number of high-resolution cases (nhr) that is sequen-
tially increased from 0 to 80. The goal is to determine how
many higher-resolution examples the CNN requires before it
can adequately learn the behaviour of the higher-resolution
version of CESM. At each value of nhr, 40 random trials
are conducted and a separate CNN is trained in each random
trial. This multi-resolution CNN is validated against predic-
tions of the difference maps from 20 randomly selected f09
test samples that are excluded from the training data.

The mean skill score of the CNN averaged over all seven
output variables is around 0.6 when the CNN is trained on
only the lower-resolution cases (i.e., when nhr = 0; Fig. 4a).
The skill increases approximately linearly to around 0.8 as
more higher-resolution cases are included in the training

data, but it plateaus for nhr > 40. This demonstrates that,
when averaged over all variables, the lower-resolution ver-
sions of CESM alone provide the CNN with around 75 %
of the information required to predict higher-resolution out-
puts. Increased prediction skill is achieved by introducing
the higher-resolution training cases, and our results show
clearly that around 40 higher-resolution examples repre-
sents about as many as are required. Above nhr = 40 the
returns diminish considerably, and so the benefit of running
additional costly higher-resolution cases appears small.

To evaluate the benefit of using the CNN over a simpler
approach, a baseline skill value is obtained by assuming
the CNN predicts spatial maps that equal the climatological
mean of each variable for all values of the input parame-
ters. The orange line in Fig. 4a shows that the baseline
model achieves a mean skill score of just under 0.4 when
more than 10 higher-resolution examples are included in
the calculation of the climatological mean. Importantly, the
fully-trained CNN outperforms the baseline for all values
of nhr. Net top-of-atmosphere radiative flux shows system-
atically higher skill, and precipitation shows systematically
lower skill, suggesting that skill decreases with increasing
spatial complexity in the target variable. For all variables,
the skill of the CNN-based emulator plateaus at nhr < 80,
suggesting that underfitting due to too few training cases is
not limiting the CNN’s skill. Our conclusion is that fine-
scale details of the output (e.g., Fig. 3a for precipitation)
are related more to internal atmospheric variability than to
parameter uncertainty, and are thus not being captured by
the CNN.

4. Discussion and Conclusions
The convolutional neural network (CNN) approach em-
ployed here is popular in the field of computer vision but
has not, to our knowledge, been used previously to emulate
ESM output. While computationally-efficient and ideally
suited for predicting multivariate spatially-resolved outputs,
CNN models typically require large (O(104)) training sets
to produce accurate predictions. In this study, we obtained
useful predictive skill with around 240 training samples of
differing spatial resolutions, and this is likely because the
training and validation data are both computer-generated
by the same ESM, meaning they are likely to contain less
noise than observation-based data. Alternative approaches
to constructing a multi-resolution emulator are conceivable;
for example, as an image-to-image translation, where the
lower-resolution data are the inputs to the CNN, and the
higher-resolution version is the target. However, since the
aim here is the calibration of uncertain parameters, one
would also have to consider how the perturbed parameter
values that correspond to each training case would be in-
corporated into the CNN architecture. For this reason we
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Figure 3: The skill of the CNN in predicting high-resolution di↵erence maps after being

trained on the full lower- and medium-resolution ensembles, plus an increasing number (nhr)

of high-resolution samples. The performance of the CNN is compared to a simple baseline null

model, which is calculated as the climatological mean of the nhr high resolution samples included

in the training set.

-For some variables like precipitation, the peak SS is lower at around 0.6319

with n=40 and 0.7 with n=100 high-res examples. Would the n=40 case be suf-320

ficient to allow reasonable model tuning with a SS of only 0.7? Think about key321

atmospheric metrics used for tuning: e.g., cloud fraction / planetary albedo, ITCZ322

strength/position. How are these represented in the CNN projections?323

-[Calculate CPU cost savings for modelling centre that used the CNN versus324

calibration runs with the higher-resolution model. Example: if we selected n=20325

high-res cases, then the total cost is: 100*f45 [100 ypd on 80PEs] + 100*f19 [35 ypd326

on 160 PEs] + 20*f09 [12 ypd on 160PEs] + CNN [Will to provide estimate but it327

looks like 4 hours per experiment]. This is compared to 100*f09 [12 ypd on 160PEs]328

for the case where we didn’t use the CNN.]329

[Add discussion about the relationship between resolutions in the330

model: are the climatologies of key variables in Fig2 well correlated,331

when the low-res data are upscaled to f09?]: Might add this to methods or332

results if its interesting.333

Limitations:334

Beyond the scope/next steps:335
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medium-resolution ensembles, plus an increasing number (nhr) of high-resolution samples. (left) the mean skill over all seven outputs,
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believe that the architecture shown in Fig. 2 represents a
simple and efficient mapping of the vector of parameter
values onto an array of spatially-resolved ESM outputs.

Our results show that a highly accurate emulator can
be trained using relatively few iterations of the higher-
resolution ESM, thus offering the potential for significantly
improved efficiency in the calibration process. To illustrate
the time and resource saving associated with our approach,
the CPU time required to run CESM-CAM4 at f09 reso-
lution is a factor of 16 higher than at f45 resolution. The
total CPU time required to complete the two 100-member
ensembles at lower resolution, plus nhr = 20 (nhr = 40)
higher-resolution simulations, is reduced by 40 % (20 %)
compared to producing only a 100-member ensemble of
the higher-resolution model. Assuming that similar sta-
tistical relationships extend to grid resolutions finer than
f09—which are more relevant for decision-makers—one
could theoretically expect even greater efficiency gains for
an ESM with resolution O(10 km). An interesting question
is whether the CNN in this study, trained on output from
CESM, could be used to emulate other ESMs. In principle,
useful predictive information on the relationship between
aerosol, cloud and precipitation parameters in CESM could
be applied to help calibrate other models, but one important
limitation is that different ESMs employ different physical
parameterization schemes. This means that some/all of the
parameters being calibrated in CESM are unlikely to exist
in other ESMs; in fact, many of the parameters being cal-
ibrated in this study, described in detail in Fletcher et al.
(2018), have been replaced or superseded in more recent
versions of CESM-CAM (Boyle et al., 2015; Danabasoglu
et al., 2020). It seems likely, therefore, that a unique CNN
would need to be trained for a different ESM, unless they
shared parameterization schemes.

The choice of nhr is somewhat subjective, and depends

on what constitutes sufficiently high skill of the emulator
to enable calibration. With this CNN the skill score for
precipitation only reaches 0.7 at nhr = 40, yet model devel-
opers may consider the predicted pattern of precipitation in
Fig. 3b to be adequate. If the target field is more spatially
homogeneous, like FNET, then only nhr = 20 may be re-
quired, and these decisions will likely differ for individual
modeling centers. The outcome may also be sensitive to
the region, and/or season, of interest. We consider only
parametric uncertainty here, and emulation could feasibly
be used to examine structural uncertainty in ESMs (Watson-
Parris, 2020; Watson, 2019). Future work will also evalu-
ate the CNN-based emulator in an operational-like setting,
where the calibration of parameters is typically performed
by minimizing the difference between the ESM and ob-
servational data, rather than against the default version of
the ESM (Hourdin et al., 2016). The computational effi-
ciency of the emulator means that using it to replace the
ESM in the calibration process allows for a much larger
sample of parameter combinations to be evaluated, with
the implication that the final calibrated model will provide
a better representation of the observed climate (Hourdin
et al., 2021). Finally, even greater computational efficiency
gains could be made by using the CNN-based emulator to
calibrate higher-resolution configurations of fully-coupled
ESMs with an interactive ocean model, including training
the CNN to predict temporally-resolved outputs from tran-
sient climate simulations (for example, with time-evolving
greenhouse gas forcing).
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