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Abstract

Accurately forecasting Arctic sea ice from sub-
seasonal to seasonal scales has been a major sci-
entific effort with fundamental challenges at play.
In addition to physics-based earth system models,
researchers have been applying multiple statistical
and machine learning models for sea ice forecast-
ing. Looking at the potential of data-driven sea ice
forecasting, we propose an attention-based Long
Short Term Memory (LSTM) ensemble method
to predict monthly sea ice extent up to 1 month
ahead. Using daily and monthly satellite retrieved
sea ice data from NSIDC and atmospheric and
oceanic variables from ERAS reanalysis product
for 39 years, we show that our multi-temporal
ensemble method outperforms several baseline
and recently proposed deep learning models. This
will substantially improve our ability in predicting
future Arctic sea ice changes, which is fundamen-
tal for forecasting transporting routes, resource
development, coastal erosion, threats to Arctic
coastal communities and wildlife.

1. Introduction

Over the last three decades, the warming of the sea ice in the
Arctic has been almost twice faster than the rest of the world.
This phenomenon is also called Arctic amplification (Hol-
land & Bitz, 2003).This amplification will further alter the
climate patterns beyond the Arctic region and lead to more
intense and more frequent extreme weather events. A recent
example of this is the 2021’s historic cold snap in Texas and
Oklahoma, where more than 3000 daily low temperature
records were broken, resulting in at least 176 fatalities and
$195 billion economic loss (Freedman et al., 2021). The sea
ice plays a key role in the Arctic climate system and it has
been fallen by half since 1979 when the satellite observa-
tions were available (Serreze & Stroeve, 2015). On current
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trends, the Arctic ocean could be sea ice free by 2050 (Notz
& Stroeve, 2018). Such rapid changes has profound local
and global impacts on transporting routes, resource devel-
opment, coastal erosion, military and civilian infrastructure,
Arctic coastal communities (hunting and transportation by
indigenous populations), wildlife (e.g., polar bear access to
food sources).

Though most of the scientists agree that this rapid Arctic
warming is a sign of human-caused climate change, study-
ing the causes of Arctic amplification and forecasting sea
ice has become one of the most hyped questions in the Earth
Science research (Holland et al., 2019). Current operational
sea ice forecasting systems are mainly based on coupled
Earth System Models, which estimates the solution to dif-
ferential equations of fluid motion and thermodynamics to
obtain time and space dependent values for various vari-
ables in the atmosphere, ocean or sea ice. However, these
physics-based models perform no better than simple sta-
tistical methods at lead times of two months and beyond.
Over the last few years, there are many studies focusing on
sea ice forecasting using data-driven Artificial Intelligence
(AI) approaches like machine learning and deep learning.
Chi & Kim (2017) compared the Long Short-Term Memory
(LSTM) model with a traditional statistical model, and they
found that the LSTM showed good performance for 1-month
sea ice concentration (SIC) prediction, with less than 9% av-
erage monthly errors. However, there is lower predictability
during the melting season, with the root-mean-squared-error
(RMSE) of 11.09% from July to September. Wang et al.
(2017) showed the superiority of the convolutional neural
networks (CNN) in SIC prediction with an estimated RMSE
of 22% compared to a multi-layer preceptron model. Kim
et al. (2019) applied deep neural networks with Bayesian
model averaging ensemble to predict the SIC in the next
10 to 20 years and found out the annual RMSE of 19.4%.
More recently, Kim et al. (2020) built a novel 1-month SIC
prediction model with CNNs using eight predictors to pre-
dict SIC both temporally and spatially. They showed that
CNNs had better performance than a random forest model
and the persistence model based on the monthly trend, with
the RMSE of 5.76%. Liu et al. (2021) proposed a 1-day
SIC prediction model based on the Convolutional LSTM
and they concluded that the predictability of Convolutional
LSTM always performed better than that of the CNN, with
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an RMSE of 11.24% through 10 consecutive days of itera-
tive prediction.

In light of above related work, we introduce a sea ice fore-
casting system with Attention-based Ensemble Long Short-
Term Memory (LSTM) networks to predict monthly sea
ice extent with a lead time of 1 month. The major goal of
this study is to work on deep learning based forecasting
models that can utilize multi-temporal data to forecast daily,
weekly and monthly sea-ice extent with comparatively high
accuracy. Our major contributions are as follows.

* We propose an ensembling method for multi-temporal
Deep Learning models that performs ensembling of con-
stituent models to give optimal sea ice predictions for next
1 month.

* We introduce an attention mechanism in our ensemble that
lets model pay more or less attention to different features
learned by constituent Deep Learning models leading to
lower loss and higher accuracy.

2. Data and Method
2.1. Dataset

In this study, we use ten atmospheric and ocean variables
obtained from ERA-5 global reanalysis product and sea
ice extent values, derived from sea ice concentrations, that
we obtained from the Nimbus-7 SSMR and DMSP SSM/I-
SSMIS passive microwave data version 1 (Cavalieri et al.,
1996) provided by the National Snow and Ice Data Center.
These variables are enlisted in Table 1. We created two
time-series combining both sea ice extent and atmospheric
variables for a span of 39 years, from 1979 to 2018. In
the first time-series, monthly gridded data during 1980-
2018 has been averaged over the Arctic north of 25° N
using area-weighted method. In the second time-series,
daily gridded data has been averaged over the same spatial
location. Throughout the experiments, we use first 34 years
of data for training and last 5 years of data for testing.

Table 1. Variables included in the Dataset

VARIABLE RANGE UNIT
SURFACE PRESSURE [400,1100] HPA
WIND VELOCITY [0,40] M/S
SPECIFIC HUMIDITY [0,0.1] KG/KG
AIR TEMPERATURE [200,350] K
SHORTWAVE RADIATION [0,1500] W/m2
LONGWAVE RADIATION [0,700] W/m2
RAIN RATE [0,800] MM/DAY
SNOWFALL RATE [0,200] MM/DAY
SEA SURFACE TEMPERATURE [200,350] K
SEA SURFACE SALINITY [0,50] PSU
SEA ICE CONCENTRATION [0, 100] %

2.2. Preprocessing

To feed our data to LSTM model, we reshape our Nx11
two-dimensional datasets to MxT'x11 three-dimensional
datasets in such a manner that each row of predictors corre-
sponds to (M-1)th month’s sea-ice value. Here N represents
total number of data samples, M represents total number of
months and T represents the timestep. We achieve this by
removing the first row of sea-ice values and Nth record from
monthly and daily data, the details of which are mentioned
in sections below. In both the approaches, we rescale the
data using Standard Scaler normalization technique.

2.2.1. DAILY DATA

We first needed to reshape the daily data to add a third
dimension in order to get chunks of 30 X,,_1 predictors
corresponding to each Y s predictand. For this, we first
removed the 31st days from specific months. Then we
augmented 28th or 29th day of February once or twice
depending upon the occurrence of leap year. The final rows
were perfect multiples of 30. We then reshaped the N rows
of 11 predictors to Mx30x11 3D matrix and removed the
last Mth row to align the dataset with M — 1 monthly sea ice
values. Here, 30 represents the timestep T for one month’s
data. With this arrangement, we get January 1979’s data
values against February 1979’s sea-ice extent value and so
on.

2.2.2. MONTHLY DATA

Since this version of data already corresponded to monthly
sea-ice values, we reshape the Mx11 data matrix to Mx1x11
data matrix. Here 1 represents timestep T for one month.
To incorporate lead time of 1, we remove last Mth record
of monthly data to align it with M — 1 sea-ice values such
as January 1979’s monthly record corresponds to February
1979’s sea-ice value and so on.

2.3. Overall Architecture

We propose an attention-based ensemble method for multi-
temporal LSTM modeling to predict monthly sea ice ex-
tent with a lead time of 1 month. To cater the two tem-
poral frequencies of datasets, we first design two simple
many-to-one LSTM networks, daily LSTM or d-LSTM, and
monthly LSTM or m-LSTM. We then concatenate the re-
sults from these two branches with and without attention
to get monthly predictions for the sea-ice values. All three
variants of models are developed using Keras Functional
API with Tensorflow backend, optimized using ’Adam’ op-
timizer and evaluated using mean-squared-error’ loss. To
avoid over-training, the models are trained using the Early
Stopping evaluation criteria. The overall architecture of our
attention-based ensemble method is illustrated in Figure 1.
Here, Djs—1 and M — 1 corresponds to daily and monthly
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Figure 1. Overall Architecture of Attention-based LSTM Ensemble (EA-LSTM).

records from preceding month and Yj,_; represent sea-ice
values from preceding month whereas Y, represents predic-
tions for the next month. Here we are combining only two
temporal models, owing to the availability of two temporal
datasets. However, the proposed architecture can incorpo-
rate any number of Deep Learning models in its concatena-
tion part; the final fully connected layer learns weights to
assign to individual models and returns prediction based on
those weights.

2.4. Daily-to-Monthly Prediction Network (d-LSTM)

We first designed a simple LSTM network with three LSTM
layers, one Dropout layer and two fully connected layers.
This model takes in as input a three dimensional array
NxTxP of daily data, where N is the batch size, T is the
timestep and P is the number of predictors. In our case,
this setting is equivalent to A/x30x11. The main motivation
behind developing this network was to overcome the small-
data problem faced by a deep learning model that is trained
on few hundreds of monthly data and predicts monthly sea-
ice values. We train this model on a dataset of 12,240
records, that is 34 years. The corresponding prediction is
the monthly means of sea-ice extent for (M + 1)th month.
To our knowledge, combining lower temporal frequency
data to predict a higher temporal frequency value is still a
novel approach in data-driven atmospheric forecasting.

2.5. Monthly-to-Monthly Prediction Network
(m-LSTM)

We then designed another simple LSTM network with the
similar architecture as d-LSTM. However, instead of a
timestep of 30, this models takes in a timestep of 1, rep-
resenting one month. We train this model on the monthly
dataset of 420 records, that is 34 years. Similar to d-LSTM,
here the corresponding predictand is the monthly mean of
sea-ice extent for (M + 1)th month.

2.6. Attention-based Ensemble Model (EA-LSTM)

Attention Mechanism. Not all hidden states of recurrent
neural network contribute equally to the predictions. In-
spired by attention mechanism introduced in (Luong et al.,
2015), we add an intermediary self-attention layer on top
of the final LSTM layers in both d-LSTM and m-LSTM, in
order to identify which hidden states contribute more to the
target prediction. The attention mechanism assigns impor-
tance scores to the different hidden states of LSTM model
enabling the model to focus on most relevant features within
the input. Specifically, at each time step ¢, our attention
layer first takes as input the hidden states h; at the top layer
of a stacking LSTM, it then infers a context vector c, that
captures relevant hidden information based on current target
state h; and all source states h, of the LSTM model. Atten-
tion mechanism helps improve the deep learning model by
attending to relevant hidden states so that it can significantly
reduces the error of the prediction.

Ensemble Model. In all recent research work conducted on
sea ice predictions, we have seen models trained on same
temporal frequency as their predictions. However, in our
case, m-LSTM itself cannot be a good predictive method
for our dataset due to its small volume. Since the monthly
dataset suffers from small-data problem, we combined the
two approaches using an attention-based ensemble tech-
nique. To ensemble the two temporal models, we retrieve
the model output from each of the fully connected layers
of both LSTM networks to get the individual model predic-
tions. We then concatenate the predictions retrieved from
both LSTM branches and add a fully connected layer to
learn the concatenation weights of both the models give
final monthly sea-ice predictions. We give a generic formu-
lation of our ensemble in Eq. 1 where y is the final model
outcome, f1,..f, represent the NV constituent inner models
and w,, is the weight assigned to individual model. In our
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case, N = 2.

N

n=1

3. Results & Analysis

We present results from the experiments conducted on base-
line models as well as our proposed deep learning models.
We present our analysis by comparing the results from all
experiments using the percentage RMSE loss and R-squared
score.

3.1. Baseline Experiments

To evaluate the comparative performance of our proposed
model, we performed sea-ice forecasting on monthly dataset
with a lead time of 1 using five renowned Machine Learning
models enlisted in Table 2. All these models were trained
on first 34 years of data, that is, 420 records and tested on
last 5 years, that is, 80 records. The results achieved from
these models are tabulated in Table 2. Among these baseline
models, we see that both ensemble models Random Forest
and XGBoost have the highest prediction performance on
the monthly dataset.

Table 2. Experimental results from baseline (first five rows) and
proposed (last four rows) models on Sea Ice prediction with a lead
time of 1 month.

MODEL R? SCORE  %RMSE
LINEAR REGRESSION 0.974 5.05
DECISION TREE 0.963 6.00
RANDOM FOREST 0.978 4.63
XGBOOST 0.976 4.83
POLYNOMIAL REGRESSION 0.966 5.76
d—LSTM 0.980 4.45
m—LSTM 0.981 4.21
E-LSTM 0.977 4.60
EA-LSTM 0.982 4.11

Sea ice prediction (Lead time:1 month)

Figure 2. Time-Series Plot of Sea Ice observational data, m-LSTM
predictions and EA-LSTM predictions for January 2014 - Decem-
ber 2018.

3.2. Comparative Analysis

We first evaluated the performance of simple d-LSTM and
m-LSTM models. Through our experiment, we see that
d-LSTM gives promising predictions as it is trained on daily
data and predicts monthly mean sea ice values. We fur-
ther observed that m-LSTM not only out-performs d-LSTM
but also provides competitive results compared to multiple
baseline models. We then evaluated the performance of our
ensemble method with and without attention and observed
that attention mechanism not only improved the overall per-
formance but also significantly reduced the model loss. A
tabulated summary of these results can be seen in Table
2. Comparing our results with the performance of similar
methods proposed by Chi & Kim (2017) and Kim et al.
(2020), we see a significant performance improvement in
our sea-ice predictions with around 1.65% and 8% reduction
in RMSE loss respectively, as compared to their results.
Figure 2 shows the temporal predictions from m-LSTM
and EA-LSTM against the observed sea-ice values for the
time period of January 2014 to December 2018. Looking
at the observed versus predicted graphs of sea-ice, we see
that our EA-LSTM method gives predictions that are more
aligned with the observed values; it also gives better pre-
dictions of sea-ice extent values in the melting season of
July-September as compared to simple m-LSTM, giving us
more confidence in the attention-based ensemble method.

4. Conclusion & Future Work

In this paper, we present an attention-based ensemble
method to predict monthly sea-ice values with a lead time of
1 month. Our proposed model can combine models having
different temporal resolutions and learn their weighted aver-
age using attention-based mechanism. We started off with
simple daily-to-monthly and monthly-to-monthly prediction
models and moved forward to develop an ensemble model
that learns from multi-temporal datasets and gives sea-ice
predictions with a commendable RMSE loss of 4.11%.
Though we trained the ensemble using only two model
branches, our proposed architecture is expandable to any
number of model branches that can be trained on different
temporal resolutions. Through our experiments, we showed
how attention improves model performance and reduces
overall loss. Comparing our results with baseline models
and related research work, we see our attention-based en-
semble technique gives promising results for forecasting
monthly sea-ice extent.

It should be noted that there are several limitations with
current study. First, the uncertainties in satellite retrieved
sea ice observation and ERA-5 reanalysis product cannot be
neglected, which will exert a large influence on our results.
In addition, the seasonality and inter-annual variability are
not well handled by the current method. In the future, we
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are going to apply the same method to deseasonalized time
series. In the meantime, the simulations from different
models will be used to better understand the impacts of
inter-annual variability on sea ice predictability.

For future work, we will also extend our proposed ensemble
method to combine spatio-temporal models with different
spatial and temporal resolutions. We also plan to visualize
the attention weights learned from these intermediary atten-
tion layers to better understand the underlying working of
deep learning models and to interpret what the ensemble
model learns.

The 1-month sea ice forecast is our starting point. In the
future, we will go beyond the seasonal sea ice forecast and
investigate how ensemble method can help us to improve
the long-term sea ice projection. The sea ice coverage and
length of open water season will inform future planning of
military, civilian, and commercial infrastructure including
buildings and marine vessels. In the meantime, we should
also be aware of some potential risks with a more accurate
sea ice forecast (e.g., more aggressive resource extraction
in the Arctic). Nevertheless, this work will not only help
us to better predict the future climate, but also promote
local communities and the broader international society
to respond and adapt to a changing Arctic with increased
greenhouse emissions.
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