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Due to climate change, global trends project!!!
- space cooling demand will rise from 60% to >85%

- energy needs for space cooling will >3x
between 2016 and 2050

[1] International Energy Agency, The Future Of Cooling, 2018.
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Due to climate change, global trends project!!!
- space cooling demand will rise from 60% to >85%

- energy needs for space cooling will >3x
between 2016 and 2050

Dangerous positive feedback loop that will exacerbate
climate change unless space cooling is optimized for the
same energy demand

- ML has been identified as enabling technology for
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[1] International Energy Agency, The Future Of Cooling, 2018.
[2] Rolnick et al., Tackling Climate Change with Machine Learning, arXiv:1906.05433, 2019.
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Digital Twins and Climate Change

Due to climate change, global trends project!!!
- space cooling demand will rise from 60% to >85%

- energy needs for space cooling will >3x
between 2016 and 2050

Dangerous positive feedback loop that will exacerbate
climate change unless space cooling is optimized for the
same energy demand

- ML has been identified as enabling technology for
building optimization!?!
- Many field experiments for data is impractical

Digital twins (DTs) enable safe experiments via simulation,
but they need to be calibrated to accurately reflect truth

[1] International Energy Agency, The Future Of Cooling, 2018.
[2] Rolnick et al., Tackling Climate Change with Machine Learning, arXiv:1906.05433, 2019.
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Building System + HVAC Calibration of Physics-Informed Digital Twins
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Building System + HVAC Calibration of Physics-Informed Digital Twins
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Measured data
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Examples of 0
Building: airflow coefficients, material properties
HVAC:  heat transfer coefficients, refrigerant properties
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Building System + HVAC Calibration of Physics-Informed Digital Twins
e (via Bayesian Optimization)

Measured data
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ANP-BBO: Why not GPs?

GP-BO: Proposed ANP-BBO:

X Inference is expensive v" Inference is cheap!'!

X Limited to Gaussian distributions v Wide range of distributions!?!

X Simulations/cost evaluation not parallelizable v" Simulations/cost evaluation can be parallelized

[1]1 Kim et al. Attentive Neural Processes. https://arxiv.org/pdf/1901.05761.pdf

[2] Garnelo et al. Neural processes. arXiv preprint arXiv:1807.01622. ANP-BBO: Attentive Neural Processes-Batch Bayesian Optimization
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ANP-BBO: Algorithm
GP-BO: Proposed ANP-BBO:
X Inference is expensive v" Inference is cheap
X Limited to Gaussian distributions v Wide range of distributions
X Simulations/cost evaluation not parallelizable v" Simulations/cost evaluation can be parallelized

i. Current dataset after t iterations D' = {(6,.J)},° ™" g

)

ii. Train ANP by maximizing ELBO with N new data points

® Context points
B Target points
Uncertainty

iii. Select batch of N candidates during inference 24 | . . | .
. 0.0 0.2 0.4 0.6 0.8 1.0
— Sample a latent, z (Cheap inference)

—  Perform target set penalization (Wide range)

iv. (Parallelizable) Simulate to evaluate cost (via digital twin) 0-

0.0 0.2 0.4 0.6 0.8 1.0
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ANP-BBO: Calibration Results

Digital Twin of 1 Floor of Commercial Building in Tokyo, JP
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Setup:
* 12 parameters to be calibrated

5 days of measured temp. and RH data, noisy, quantized
2 days for calibration, 3 days for testing

[1]1 ASHRAE, Guideline 14-2014, measurement of energy, demand, and water savings. 2014.

R-x: Room number x, x € {1,2,3}
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ANP-BBO: Calibration Results

Digital Twin of 1 Floor of Commercial Building in Tokyo, JP Measured and simulated outputs
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Setup:
* 12 parameters to be calibrated Outputs coefficient of variation of RMSE is <1%, well
« 5 days of measured temp. and RH data, noisy, quantized within the ASHRAE guidelines <15% !
» 2 days for calibration, 3 days for testing
[11 ASHRAE, Guideline 14-2014, measurement of energy, demand, and water savings. 2014. R-x: Room number x, x € {1,2,3}
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ANP-BBO: Ablation Studies

1. ANP-BBO: Proposed algorithm
2. ANP-NoTarPen: Switch off target set penalization
3. ANP-NoRetrain: Train ANP once with initial data, no further retraining
4. SGP-VFE-100/500: Use sparse Gaussian processes!!!l as learner, with 100 or 500 inducing points
ANP-NoTarPen: Shows target penalization
_ helps more than only latent sampling
C 10 —— ANP-BBO —&— ANP-NoRetrain —%¥— SGP-VFE-500
S —&— ANP-NoTarPen  —#— SGP-VFE-100 _ T
o o ® ® ANP-NoRetrain: Lack of retraining with limited
+2 initial data does poorly
g —1.57 | A b
+ £ i o O i
0 L| e @ SGP-VFE: Good early, but gets stuck due to
“ _20- ¥ ¥ $ 4 ‘*14 ¥  { worsening approximations at scale
0 200 400 600 800 1000
Digital twin simulations during calibration ANP-BBO: outperforms the others after 700
iters due to diverse and good candidates

[1] Titsias. Variational learning of inducing variables in sparse Gaussian processes. AISTATS, 2009.
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