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Abstract
Physics-informed dynamical system models form
critical components of digital twins of the built
environment. These digital twins enable the de-
sign of energy-efficient infrastructure, but must
be properly calibrated to accurately reflect system
behavior for downstream prediction and analy-
sis. Dynamical system models of modern build-
ings are typically described by a large number of
parameters and incur significant computational
expenditure during simulations. To handle large-
scale calibration of digital twins without exorbi-
tant simulations, we propose ANP-BBO: a scal-
able and parallelizable batch-wise Bayesian op-
timization (BBO) methodology that leverages at-
tentive neural processes (ANPs).

1. Motivation
Buildings account for nearly 40% of global electricity use
(over 70% in the U.S.) and at least one third of CO2 emis-
sions, while space cooling specifically plays a prominent
role as it represents more than 70% of peak residential elec-
tricity demand to cope with extreme weather. Forecasts
indicate that the demand for space cooling will continue
rapid growth, with the energy consumed by these appli-
cations projected to triple between 2016 and 2050 (Birol,
2018). Current efforts to reduce the climate-related im-
pact of this energy consumption are focused on the cre-
ation of grid-interactive buildings, which coordinate the
dynamic behavior of buildings with electrical grid behav-
ior that is dominated by time-varying distributed energy
resources (Satchwell et al., 2021). As the design and control
of these buildings represent a significant change in how
buildings are operated, new models that accurately pre-
dict their experimentally-observed dynamics, the so-called
building ‘digital twins’, are crucial to developing these next-

1Mitsubishi Electric Research Laboratories (MERL), Cam-
bridge, MA, USA.. Correspondence to: A. Chakrabarty
<achakrabarty@ieee.org>.

Tackling Climate Change with Machine Learning Workshop at
ICML 2021.

generation systems.

Building and heating, ventilation, and cooling (HVAC) digi-
tal twins need to be calibrated to operational data to accu-
rately replicate the observed behavior of the physical system.
Physics-informed dynamical models have a number of ad-
vantages in digital twin applications, as they have good
predictive/extrapolation properties, their parameters are in-
terpretable by domain experts, and they can be built using
information that is measured or archived. Unfortunately,
these advantages are often accompanied by nonlinear behav-
ior and numerical stiffness that make simulation sluggish,
and the models often comprise translucent/opaque compo-
nents for privacy or proprietary information security. The
ensuing calibration problem therefore tends to be black-
box and large, because modern digital twins often contain
hundreds or thousands of parameters to be calibrated. Ma-
chine learning has been identified as a key technology in
optimizing building models (Rolnick et al., 2019).

This calibration problem can be abstracted by considering a
predictive simulation model

y0:T =MT (θ), (1)

where θ∈Θ⊂Rnθ denotes the constant parameters used to
parameterize the building and HVAC dynamics. A search
domain of parameters Θ is assumed to be available, and we
assume Θ is a box in nθ-space defined by bounded intervals.
The output vector y0:T ∈ Rny×T denotes the outputs that
have been measured using the real building sensors over a
time-span [0, T ]. We do not make any assumptions on the
underlying mathematical structure of the modelMT (θ), ex-
cept that it has been designed based on building and HVAC
physics, implying that the parameters and outputs are inter-
pretable physical quantities. Simulating MT (θ) forward
with a set of parameters θ ∈ Θ yields a vector of outputs
y0:T :=

[
y0 y1 · · · yt · · · yT

]
, with yt ∈ Rny .

Example: Building thermal and refrigerant cycle dynam-
ics are often represented by differential algebraic equa-
tions (DAEs) of the form 0 = fDAE(ẋ, x, u, θ1) and y =
hDAE(x, u, θ2). One can model this system using (1) by con-
sidering θ := {θ1} ∪ {θ2} and simulating (i.e., numerically
integrating) the system of DAEs forward over t ∈ [0, T ] to
generate the sequence of outputs y0:T .
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The calibration task is to estimate a parameter set θ? ∈Θ
that minimizes (in some goodness-of-fit sense) the modeling
error y?0:T −MT (θ?), where y?0:T denotes the measured
outputs collected from a real system, andMT (θ?) denotes
the estimated outputs from the model MT (θ) using the
estimated parameters θ?. To this end, we propose optimizing
a calibration cost function J(y?0:T ,MT (θ)) to obtain the
optimal parameters

θ? = arg min
θ∈Θ

J(y?0:T ,MT (θ)). (2)

Since each simulation is expensive and the underlying struc-
ture of the calibration model and cost are unknown, we
solve the problem (2) using Bayesian optimization (BO),
which has shown potential for global optimization of black-
box functions in a sample-efficient manner (Snoek et al.,
2012). BO requires designing two components: a prob-
abilistic map from the decision variables θ to the cost J ,
and an acquisition function that guides the selection of the
next best optimizer candidate given the available data points.
Classically, BO methods leverage Gaussian process (GP)
regression for the task of providing a probabilistic map, but
it is well known that GPs scale cubically with the number of
available data points and the dimension of Θ (Snoek et al.,
2015). Since we do not pose restrictions on J , it is possi-
ble that solving (2) for large nθ can require thousands of
data points to compute near-optimal solutions. This poses
three critical challenges for classical BO methods: (C1)
GP regression requires prohibitive training times with thou-
sands of data points in high-dimensional spaces and are
therefore not well-suited for calibrating large digital twins
of modern buildings, (C2) the GP-approximated cost func-
tion is strongly dependent on the kernel selected by the
user, and such kernels may induce functional properties like
smoothness that are not always seen in practice; and, (C3)
evaluating the cost function every time a new candidate
parameter is computed is not amenable to parallelization.

In lieu of GPs, we propose using attentive neural processes
(ANPs) to approximate the calibration cost. ANPs are deep
neural networks that are capable of learning a broad class
of stochastic processes, and therefore, can make predictions
equipped with uncertainty quantification (Garnelo et al.,
2018). ANPs are highly scalable and suitable for train-
ing on high-dimensional problems with large datasets, and
can perform well without requiring careful kernel selection.
Consequently, we posit that replacing GPs with ANPs solves
the challenges (C1) and (C2). Another benefit of ANPs is
that they incur less computational complexity during infer-
ence than GPs. This fact, coupled with the observation that
re-training an ANP with single datapoint increments seems
wasteful as the inference of a deep neural network is unlikely
to change significantly with one additional point, suggests
the utility of batch BO (BBO) methods. Unlike BO, BBO
acquisition functions generate a batch of candidates that are

to be evaluated. Thus, the time-consuming cost function
evaluation can be parallelized and the ANP updated with a
batch of data points: this provides a way to address (C3).
Note that due to multi-scale dynamics and combination of
PDEs, DAEs, etc. in digital twins of buildings, simulating
the twin can require orders of magnitude more time than
retraining ANPs; especially simulations with large T .

2. Relevant Work
State-of-the-art methods for calibration of thermal mod-
els are presented in the survey by Wang & Chen (2019):
these models often do not consider equipment dynamics
and parameters are not easily interpreted. Conversely, the
study by Drgoňa et al. (2021) shows the benefits of physics-
informed models. However, the associated increase of digi-
tal twin model complexity requires scalable and sample-
efficient optimization algorithms like BO. Scalable BO
methods typically fall into two classes, those based on low
dimensional embeddings (Wang et al., 2016; Nayebi et al.,
2019; Lu et al., 2018), or those based on alternate probabilis-
tic regressors that scale well with dimensions and number
of data points, such as kernel methods (Kandasamy et al.,
2015; Oh et al., 2018), or deep Bayesian networks (Snoek
et al., 2015; Springenberg et al., 2016). Very recently, a
neural process (without attention) has been considered as a
surrogate for BO (Shangguan et al., 2021). However, there
is clear empirical evidence that ANPs produce ‘tight’ pre-
dictions at data points where the objective is known; this
is an essential property needed for BO and the lack of this
property is a drawback of the NP. Furthermore, their imple-
mentation involves training the NP once with a large amount
of initial data, which differs from our approach of batch BO
to avoid re-training too often. Recent work on BBO has
resulted in powerful algorithms for selecting batches based
on the GP posterior (Azimi et al., 2012; Desautels et al.,
2014), or by penalizing to find disjoint regions likely to con-
tain extrema (González et al., 2016; Nguyen et al., 2016).
Other BBO methods use hallucinations from the GP poste-
rior either by Thompson sampling (De Palma et al., 2019)
or multi-scale sampling of GP hyperparameters (Joy et al.,
2020). In our proposed ANP-BBO, we combine the benefits
of penalization and hallucination during ANP inference.

3. The ANP-BBO Algorithm
Fig. 1 illustrates the ANP-BBO workflow for solving the op-
timization problem from (2) in an iterative manner. Let
Dt := {(θi, Ji)}N0+tN

i=0 denote the data (parameter/cost
pairs) collected up to the t-th iteration of ANP-BBO, where
N0 is the size of an initial dataset and N is the batch-size,
i.e., the number of model simulations/cost evaluations per-
formed at each iteration. In this work, we use the ANP (Kim
et al., 2019) to estimate the conditional Gaussian distribu-
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Figure 1. (a) Calibration workflow with ANP-BBO. (b) Illustration of target penalization and latent sampling. More details about subplot
(b) are provided in Appendix B.

tion p(JT |θT ,Dt, z), where JT is a set of cost function
values located at target points θT ⊂ Θ, and z is a latent
variable that can be sampled to obtain different realizations
of the learned stochastic process. A summary of relevant
details of the ANP are provided in Appendix A.

Directly substituting a GP with an ANP for BO with N = 1
would involve: (i) training the ANP with Dt at every t, (ii)
sampling target points θT ⊂ Θ, (iii) obtaining one sample
of the latent z, predict mean and variance of JT for the tar-
get set, and evaluate an acquisition function at those points,
(iv) selecting the target that maximizes the acquisition func-
tion as the best candidate θt,?, and (v) evaluating the cost
for θt,? and append this pair to Dt, retrain the ANP, and
repeat from (i) for iteration t+ 1. While not retraining the
ANP is an option, this requires N0 to be extremely large
and the ANP trained with N0 data points equipped with
weights that reflect the underlying function closely. In our
work, we follow the spirit of classical BO and assume N0

is small. For this, the ANP needs retraining with a growing
dataset. However, we posit that N > 1 offers the significant
advantages of reducing the number of times the ANP is
retrained while enabling parallelized simulations of digital
twins during evaluation of the calibration cost.

To this end, we propose the following modifications to the
workflow (i)–(v) above; see Fig. 1 for an illustration using a
1-D exemplar function. In particular, we loop through steps
(ii)–(iv)N times, and at each iteration k = 0, · · · , N−1, we
perform target penalization by selecting a target set θkT away
from neighborhoods of previous candidates. We explain the
target penalization step formally as follows. Let Bδ(θ) de-
note a ball of radius δ centered at θ ∈ Θ. At batch-selection
iteration k = 0, the target set is constructed by extracting

samples from the entirety of Θ. At each subsequent itera-
tion, neighborhoods of Θ are removed to ensure diversity of
solutions. Concretely, at the k-th iteration, if θt,?0:k−1 denotes
the set of candidates selected so far, then the target set θkT
will be sampled from Θ \

(⋃k−1
`=0 Bδ

(
θt,?`
))
. This method

is similar to the local penalization approach of (González
et al., 2016), but we do not assume knowledge of Lipschitz
constants of the cost. Our target penalization method re-
jects samples from the target set to ensure that candidates
in the batch do not cluster around a suspected local mini-
mum. To prevent conglomeration of candidates, we select δ
large enough to maintain distance between candidates in the
batch, while being small enough to ensure that fewer than
N balls cannot cover Θ. Additionally, we utilize the ANPs
ability to model families of distributions by sampling the
latent variable iteratively during batch-selection. Sampling
z fixes a distribution from the family of distributions; thus,
resampling z during batch-selection promotes diversity in
the statistics of the predicted output. At each k, the target
sample that maximizes a given acquisition function is added
to the batch. The target penalization and latent sampling can
be highly parallelized for efficient cost function evaluation.

4. Results and Discussion
Setup: Details about the physics-informed building digital
twin are presented in Appendix C. We obtain the data
y?0:T by simulating the building dynamics for 5 days and
collecting temperature and humidity measurements for 3
rooms (thus, ny = 6) every 15 minutes. The nθ = 12 true
parameters are provided in Table 1. The measurements are
corrupted by Gaussian noise of zero mean and 0.5 variance
(for temperature) and 4 variance (for humidity); additionally,
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the sensors are assumed to be quantized at 0.1 resolution.
The first 2 days’ data is used to train the ANP and perform
calibration. The final 3 days are used for testing; that is, the
calibrated digital twin predicts the outputs for the final 3
days for comparison with true outputs.

Calibration performance: Details about the ANP-BBO im-
plementation are provided in Appendix D. Fig. 2 illustrates
the outputs over both training and testing data (5 days) after
1000 objective function evaluations. Clearly, the continuous
lines (which are the digital twin predictions with the best pa-
rameters found by ANP-BBO) fit the data (colored circles)
well, despite noise in measurements, for both temperature
and humidity outputs. In fact, the coefficient-of-variation
root-mean-squared error (CVRMSE: ‖εi‖/

√
T ) of all of

our outputs are within 1%, which is far below the ASHRAE
guideline of 15% (ASHRAE, 2014). Furthermore, we are
encouraged to see that despite considering a search space
of significant volume (typically, calibration problems as-
sume search space ±20% of the nominal parameter value),
the final set of parameters are close to the true values (see
Table 1). Some estimates are better than others due to inher-
ent sensitivities of the parameters, but most parameters are
captured to over 90% relative accuracy.

Figure 2. Test data and digital twin estimates for 5 days using the
best set of parameters obtained by ANP-BBO. (R-x: Room x.)

θi True Best Θi θi True Best Θi
θ1 8.00 8.04 [6, 10] θ2 5.00 5.09 [3, 7]
θ3 0.45 0.35 [0, 1] θ4 3.00 2.88 [2, 4]
θ5 1.00 1.31 [0, 2] θ6 0.10 0.11 [0, 1]
θ7 1.00 0.97 [0, 1] θ8 0.10 0.07 [0, 1]
θ9 18.00 18.35 [14, 20] θ10 10.00 10.32 [8, 11]
θ11 0.48 0.53 [0,2] θ12 6.00 6.07 [3, 7]

Table 1. Parameter estimates and corresponding search spaces.

Ablation study: We perform additional testing of ANP-BBO
with the following modifications: (i) we switch off target set
penalization and rely only on latent sampling for batch-
selection (ANP-NoTarPen), (ii) we train the ANP once
on the initial dataset and do not perform retraining (ANP-

NoRetrain) as in Shangguan et al. (2021), (iii) we perform
BO with sparse Gaussian processes (Titsias, 2009) with
100 inducing points and 1000 function evaluations (same as
ANP-BBO) to prevent prohibitive training times (SGP-VFE-
100), and (iv) same as (iii) but with 500 inducing points
(SGP-VFE-500). The results of this study are encapsulated
in Fig. 3, where we see that ANP-BBO outperforms its com-
petitors, with SGP-VFE-500 showing fast decay but lack of
improvement owing to subsequent BO candidates clustering
around similar subregions of Θ. The benefit of target penal-
ization is also evident, as we see ANP-BBO’s cost decays
faster and more consistently than ANP-NoTarPen owing to
the exploratory aspect introduced by the diversity amongst
predictions induced by target penalization. We observe that
ANP-NoRetrain performs poorly, which is expected since
lack of retraining implies that the attention weights are not
recomputed, and therefore new context points which may
contain critical information to the optimization problem is
largely underutilized.

Figure 3. Ablation study results. Comparison of incumbent cost
with number of function evaluations (i.e. number of simulations).

To justify that ANP retraining is often faster than N digital
twin simulations, we refer the reader to Appendix E, where
we have compared training and inference times of ANP
and exact GP for a large number of datapoints in 12-D
parameter space, as in our building calibration task. We
also demonstrated that a week-long simulation of modern
buildings that also accurately model stiff HVAC dynamics
is comparable to ANP retraining times. Thus, we posit
that longer horizon (month/year-long) or larger-scale (cities)
digital twin simulations will incur over 10× wall-time than
ANP retraining.

5. Conclusions
We proposed an ANP-BBO methodology that harnesses the
power of probabilistic deep learning to calibrate industrial
digital twins due to the presence of unmodeled dynamics
and opacity incorporated to protect privacy, trade secrets,
etc. Precisely calibrating digital twins enables monitoring,
control, self-optimization, and other key technologies that
are strongly coupled with sustainability, air quality control,
leakage detection, etc. Thus, accurate and scalable calibra-
tion mechanisms are essential to tackling climate change.



ANP-BBO for Calibrating Physics-Informed Digital Twins

References
ASHRAE. Guideline 14-2014, measurement of energy,

demand, and water savings. American Society of Heating,
Refrigerating, and Air Conditioning Engineers, Atlanta,
Georgia, 2014.

Azimi, J., Jalali, A., and Fern, X. Z. Hybrid batch Bayesian
optimization. In Proceedings of the 29th International
Conference on International Conference on Machine
Learning, pp. 315–322, 2012.

Bauer, P., Dueben, P. D., Hoefler, T., Quintino, T.,
Schulthess, T. C., and Wedi, N. P. The digital revolution
of Earth-system science. Nature Computational Science,
1(2):104–113, 2021.

Birol, F. The future of cooling. Technical report, Interna-
tional Energy Agency, 2018.

De Palma, A., Mendler-Dünner, C., Parnell, T., Anghel, A.,
and Pozidis, H. Sampling acquisition functions for batch
Bayesian optimization. arXiv preprint arXiv:1903.09434,
2019.

Desautels, T., Krause, A., and Burdick, J. W. Parallelizing
exploration-exploitation tradeoffs in Gaussian process
bandit optimization. Journal of Machine Learning Re-
search, 15:3873–3923, 2014.

Drgoňa, J., Tuor, A. R., Chandan, V., and Vrabie, D. L.
Physics-constrained deep learning of multi-zone building
thermal dynamics. Energy and Buildings, 243:110992,
2021.

Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q.,
and Wilson, A. G. GPyTorch: Black-box Matrix-Matrix
Gaussian Process Inference with GPU Acceleration. In
Proc. NeurIPS, pp. 7587–7597, 2018.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F.,
Rezende, D. J., Eslami, S., and Teh, Y. W. Neural pro-
cesses. arXiv preprint arXiv:1807.01622, 2018.
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Appendix
A. Architecture and Description of Attentive Neural Processes (ANP)

In the context of Bayesian optimization for digital twin calibration, the ANP (Kim et al., 2019) is a regressor that defines
stochastic processes with digital twin parameters serving as inputs θi ∈ Rnθ , and function evaluations serving as outputs
Ji ∈ R. Given a dataset D = {(θi, Ji)}, we learn an ANP for a set of nT target points DT ⊂ D conditioned on a set of nC
observed context points DC ⊂ D. The ANP is invariant to the ordering of points in DT and DC ; furthermore, the context
and target sets are not necessarily disjoint. The ANP additionally contains a global latent variable z with prior q(z|DC) that
generates different stochastic process realizations , thereby incorporating uncertainty into the predictions of target function
values JT despite being provided a fixed context set.

Concretely, given a context set DC and target query points θT , the ANP estimates the conditional distribution of the target
values JT given by p(JT |θT ,DC) :=

∫
p(JT |θT , rC , z) q(z|sC) dz, where rC := r(DC) is the output of the transformation

induced by the deterministic path of the ANP, obtained by aggregating the context set into a finite-dimensional representation
that is invariant to the ordering of context set points (e.g., passing through a neural network and taking the mean). The
function sC := s(DC) is a similar permutation-invariant transformation made via a latent path of the ANP. Both the
transformations r in the deterministic path and s in the latent path are evaluated using self-attention networks (Vaswani
et al., 2017) with neural weights ωr 6= ωs before aggregation. The aggregation operator in the latent path is typically the
mean, whereas for the deterministic path, the ANP aggregates using a cross-attention mechanism, where each target query
attends to the context points θC to generate rC×T (JT |θT , rC , z). Note that the ANP builds on the variational autoencoder
(VAE) architecture, wherein q(z|s), rC , and sC form the encoder arm, and p(J |θ, rC×T , z) forms the decoder arm. The
architecture of ANP with both paths is provided in Appendix-Fig. 4.

For implementation, we make simplifying assumptions: (1) that each point in the target set is derived from conditionally
independent Gaussian distributions, and (2) that the latent distribution is a multivariate Gaussian with a diagonal covariance
matrix. This enables the use of the reparametrization trick (Kingma et al., 2015) and train the ANP to maximize the
evidence-lower bound loss E

[
log p(JT |θT , rC×T , z)

]
− KL [q(z|sT )||q(z|sC)] for randomly selected DC and DT within

D. Maximizing the expectation term E(·) ensured good fitting properties of the ANP to the given data, while minimizing
(maximizing the negative of) the KL divergence embeds the intuition that the targets and contexts arise from the same
family of stochastic processes. The complexity of ANP with both self-attention and cross-attention is O (nC(nC + nT )).
Empirically, we observed that only using cross-attention does not deteriorate performance while resulting in a reduced
complexity of approximately O (nCnT ), which is beneficial because nT is fixed, but nC grows with BO iterations.
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Figure 4. ANP Architecture: Paths for training (latent, deterministic) and decoder.

B. More details about Fig. 1 subplot (b):

The 1-D function used for illustration is given by J(θ) := sin(20θ) +
(

10θ
3

)2 − 10θ which has its global maximizer at
θ? = 0.5445 on the search space Θ = [0, 1]. The ANP for this example has been trained using N0 = 100 initial samples
randomly extracted from Θ. For each subplot in (b), the blue circles denote context points (these are the same for all
subplots), the black squares are target points (these are penalized at subsequent batch-selection iterations after the first), the
black shading denotes µ± 1.96σ around the ANP predictions at target points, and the orange vertical shades depict subsets
of Θ that are penalized (this is why there are no target points there). The top-most subplot of (b), with k = 0, uses all target
points to make a selection θ?0 = 0.53 for the batch. Since δ = 0.1, in the next batch-selection iteration k = 1, there are
no target points in Bδ(θ?0), which is why θ?1 = 0.21. The process is repeated. The effect of latent sampling is visible most
clearly for θ ≈ 0.8, since the uncertainty bands there have larger lobes; empirically we have observed that this has a strong
effect on the prediction uncertainties when only a few true data points have been obtained, which is the case in initial BO
iterations.
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C. Description of Building Digital Twin

Figure 5. Building Plenum Component of Digital Twin: Modelica Implementation.

A model of one floor of a contemporary four story office building, located in the Tokyo, Japan geographic area, was used
for this study. We examine the behavior of three laboratory spaces (rooms) in this building, labeled lab 1, lab 2, and
lab 3 in Figure 5, over the course of 5 days of simulated behavior. Each of these laboratory rooms has a floor area of 172.8
m2 and is 3.1 m tall, with one exterior facade that includes a single-pane 23 m2 window. Conventional building materials
and construction practices were used for the envelope, with an adiabatic lower boundary and a 1.15 m plenum above the
laboratories with an adiabatic upper boundary above the plenum. Other adjacent spaces were also included in the model,
though the thermal interactions between the laboratories under study and these spaces were limited.

This building model also included a ventilation system to supply fresh outside air for each of the laboratories. These
consisted of a fan providing inlet air at a flow rate of 2118 cfm, or approximately 0.5 air changes/hour. This ventilation air
was processed with an energy recovery ventilator (ERV) with a constant efficiency of 0.8 and pressure drop of 200 Pa to
exchange thermal energy between the supply and exhaust air streams.

Different occupancy schedules and loads were imposed on each of the rooms to explore the effect of different dynamics on
the calibration process. Laboratory 1 was occupied between the hours of 5am and 2pm, with a base convective/radiant load
of 5 W/m2 and an occupied load of 14 W/m2, as well as 3 W/m2 of latent load during the occupied hours. Laboratory 2
had a much lower overall load and was occupied between the hours of 8:30 am and 6pm, with a base convective/radiant
load of 0.1 W/m2 and an occupied load of 1.1 W/m2, as well as 0.1 W/m2 of latent load during the occupied hours.
Finally, laboratory 3 had the highest overall load and was occupied between the hours of 3pm and 12am, with a base
convective/radiant load of 10 W/m2 and an occupied load of 28 W/m2, as well as 6 W/m2 of latent load during the
occupied hours.

This model was constructed using the Modelica Buildings library (Wetter et al., 2014), an open source library developed
primarily by the Lawrence Berkeley National Laboratory to characterize a wide variety of components used in today’s
building systems. These models characterize the convective, radiative, and latent heat transfer observed in occupied spaces,
and employ an ideal gas moist air mixture model. The Tokyo-Hyakuri TMY3 model was used to describe the weather
conditions and solar heat gains between November 23-28 that were used as the subject of study, which is calibrated on
recent climate data.
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D. Implementation Details

CODEBASE

The ANP pipeline is implemented entirely in PyTorch (Paszke et al., 2019).

Comparisons with GP are performed using GPyTorch (Gardner et al., 2018).

ANP IMPLEMENTATION

For the ANP model the architecture we follow the basic version from (Kim et al., 2019), without self attention. We use
latent dimension of 128 for both the deterministic and latent paths. The deterministic encoder uses 3 fully-connected layers
with Leaky ReLU (slope=0.1) activations and 256 hidden units per layer. The latent encoder uses a similar fully-connected
architecture, however after the mean aggregation operation, we pass it through two fully connected layers, the first with
linear activation functions, to obtain the latent mean µ(z), and the second with an activation of 0.1 + 0.9 · sigmoid(x) to
obtain the latent standard deviation σ(z). For the cross attention block in the deterministic encoder, we first run the query
and key coordinate positions through a fully-connected layer of size equal to the latent dimension to obtain learned positional
encodings prior to the 8-head multi-head attention operation (Vaswani et al., 2017). Finally the decoder which takes as
input the concatenation of the sampled latent z, target position θti , and the deterministic path target encoding rti consists
of 3 fully-connected layers with Leaky ReLU (slope=0.1) activations and 256 hidden units per layer. Finally, following
the best practices in (Le et al., 2018), the output layer in the decoder has two output units, the first with a linear activation
function for estimating µ(J), and the second for estimating σ(J) with a regularized softplus activation to avoid the standard
deviation collapsing to zero, i.e., 0.1 + 0.9 · softplus(x).

We train the initial ANP for 5000 iterations (this is done offline with the N0 initial data points) with a learning rate of 10−5,
which is decreased by a factor of 2, after 1000 steps, and decreased by an additional factor of 5 after 2500 steps. We train the
ANP at each BBO iteration t, using the ADAM optimizer with an initial learning rate of 5× 10−5, which is decreased by a
factor of 2, after 250 steps, and decreased by an additional factor of 5 after 500 steps. Each step consists of a mini-batch of
32 randomly selected context (DC) and target sets (DT ) within D. For each element of the batch, we select points for DC
and DT uniformly at random from all points in D. For all, BBO iterations after the initial one, we warm start the model
using the weights from the previous iteration.

ANP-BBO IMPLEMENTATION

We start with an initial set of N0 = 1000 data points, where θ is sampled on Θ (provided in Table 1) via Sobol sequences.
The ANP is trained offline on this data, and the weights are stored for warm-starting subsequent retrains. With ε(T ) :=
(y?0:T −MT (θ)), we select the cost

J(θ) = log

(
ny∑
i=1

εi(T )>Wiεi(T )

)
,

where the logarithm helps with numerical conditioning and W is chosen to scale the outputs to similar magnitudes. Note
that we transform the minimization problem (2) to a maximization problem, as in classical BO, by reversing the sign of J .
We then perform ANP-BBO for N = 200 iterations with a batch-size of K = 5 per iteration, an upper-confidence bound
acquisition function µ+ 3σ, 5000 target points for sampling to obtain acquisition function maxima. For target penalization,
we set δ = 0.01.
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E. Comparison of Wall-times

This comparison study was performed on a Windows 10 desktop with 32-GB RAM, Intel(R) Core(TM) i9-9900K CPU @
3.60GHz. No GPU acceleration was used for training either the ANP or GP methods. All training points are 12-dimensional
vectors in accordance with the building digital twin parameters.

While ANP training times can be large, we demonstrate that a digital twin simulation can be significantly larger depending
on the time-span of simulation. In Fig. 6, we compare the wall-time incurred on the same computer for 1000 training
iterations for ANP with 2000 data points, ANP with 10,000 data points, GP with 2000 data points, GP with 4000 data
points (after which GP becomes prohibitively slow). We also compare wall-times for inference of the same number of data
points with ANP and GP. Finally, we present simulation times for 1 week using two digital twins: one with simple building
dynamics and the cooling/heating system replaced by a lookup table, and another where the HVAC dynamical equations are
also incorporated in the twin. Note that these twins could be simulated for month-long (or year-long) time-spans, which
would require over 4× (or 52×) these wall-times. Digital twins for cities and climate models would require considerably
more wall-time to simulate, even with GPU integration; in fact, these Earth-scale simulations are often estimated to require
> 5000 GPUs (Bauer et al., 2021) or supercomputing.

Figure 6. Wall times required for training, inference, and simulation of digital twin with and without HVAC equipment dynamics.


