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Abstract

With the unprecedented increase in distributed
photovoltaic (PV) capacity across the globe, there
is an increasing need for reliable and accurate
forecasting of solar power generation. While
PV output is affected by many factors, the at-
mosphere, i.e., cloud cover, plays a dominant role
in determining the amount of downwelling solar
irradiance that reaches PV modules. This paper
demonstrates that self-supervised learning of mul-
tispectral satellite data from the recently launched
GOES-R series of satellites can improve near-
term (15 minutes) solar forecasting.

We develop deep auto-regressive models using
convolutional neural networks (CNN) and long
short-term memory networks (LSTM) that are
globally trained across many solar sites on the
raw spatio-temporal data from GOES-R satellites.
This self-supervised model provides estimates of
future solar irradiance that can be fed directly to a
regression model trained on smaller site-specific
solar data to provide near-term solar PV forecasts
at the site. The regression implicitly models site-
specific characteristics, such as capacity, panel tilt,
orientation, etc, while the self-supervised CNN-
LSTM implicitly captures global atmospheric pat-
terns affecting a site’s solar irradiation. Results
across 25 solar sites show the utility of such self-
supervised modeling by providing accurate near-
term forecast with errors close to that of a model
using current ground-truth observations.

1. Introduction

Energy generation from renewable sources surpassed coal-
fired generation for the first time in the U.S. in 2019 (EIA,
2020). The U.S. Energy Information Administration (EIA)
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projects that the share of renewable sources, such as wind
and solar, in the electricity generation mix will double to al-
most 42% by 2050, and solar generation is poised to account
for almost 80% of this increase (EIA, 2021). A large portion
of solar energy comes from small-scale rooftop residential
solar installations, including private homes and businesses.
This in turn implies that consumers, instead of buying elec-
tricity from the grid, are now generating their own energy as
well as selling it back to the grid. All of this decentralized
and intermittent energy generation by millions of individual
users fundamentally alters the grid’s supply and demand
balance. The underlying problem is the uncertainty associ-
ated with solar and that solar has a potentially infinite ramp
rate — its output can rise and fall instantaneously. In contrast,
the ramp rate for conventional thermal generators is finite
— it takes time to ramp up generation. Since the grid must
balance electricity’s supply and demand at all times, any
rise or drop in solar generation must be compensated by
using conventional generators. To do so, utilities often keep
these generators on “spinning reserve”, such that they are
active but not connected. Such spinning reserves increases
energy’s cost and carbon emissions.

Accurate near-term solar forecasts can reduce the need for
such spinning reserves by enabling utilities to better plan
when to activate generators. Thus, such near-term forecasts
can help grid operators plan and balance electricity genera-
tion and consumption (Wu et al., 2015; Haupt et al., 2019).
Moreover, it can help in energy market optimization (Kaur
et al., 2016), help in planning of residential power and grid
defection (Bansal & Irwin, 2019), and lower the risks asso-
ciated with using intermittently available solar power (Quan
et al., 2015). While some utility-scale solar sites may invest
in developing their own custom models and forecasts, solar
is becoming highly distributed with millions of small sites,
which motivates a more automated approach.

Solar generation is affected by a number of factors, includ-
ing a solar site’s physical characteristics as well as atmo-
spheric conditions. While physical characteristics, such as
solar module area, tilt, orientation, etc., have well-known
physical models (Chen & Irwin, 2017), modeling and fore-
casting the impact of passing clouds and other atmospheric
phenomenon are more difficult and often the largest sources



Self-Supervised Learning on Multispectral Satellite Data for Near-Term Solar Forecasting

of error (Yang et al., 2012; Sanders et al., 2017; Chen et al.,
2018; Bansal & Irwin, 2020a; Siddiqui et al., 2019). While,
ground-level weather monitoring stations include weather
sensors to facilitate such forecasts, they can be sparsely
located. Thus, a more accessible approach is to develop ma-
chine learning (ML) models from multispectral satellite data
that can remotely and uniformly sense large portions of the
globe. This approach is especially promising for near-term
solar forecasting.

Forecasting solar PV output is akin to forecasting solar irra-
diance (which is widely available) since the former strongly
correlates with the latter (Raza et al., 2016). Numerical
Weather Predictions (NWP) algorithms (Gamarro et al.,
2019; Chen et al., 2017; Tiwari et al., 2018; Mathiesen
& Kleissl, 2011), that mostly leverage physics-based model-
ing, are often used for solar irradiance forecasting. These
physics-based models are most appropriate for forecast hori-
zons on the scale of hours to days, and not near-term fore-
casts on the scale of minutes to an hour (Hao & Tian, 2019;
Wang et al., 2019). Over long-term horizons, the complex
and non-linear evolution of climate patterns can be difficult
to model, requiring knowledge of climate processes and the
history of many atmospheric events over time that can cause
subtle changes. On the other hand, at shorter time scales of
5 to 60 minutes, machine learning can hold the potential to
implicitly model local changes directly from observational
data (Wang et al., 2019; Rolnick et al., 2019). While there
is recent work on analyzing images from ground-based sky
cameras (Zhang et al., 2018; Siddiqui et al., 2019; Paletta &
Lasenby, 2020) for near-term solar forecasting, it requires
installing additional infrastructure at the site. Another alter-
native is based on estimating cloud motion vectors (Lorenz
& Heinemann, 2012) from satellite images, however ML
approaches that more directly model solar irradiance tend to
perform better (Lago et al., 2018; Bansal & Irwin, 2020b).

In this work, we explore methods using satellite data from
GOES-16, arecent geo-stationary satellite that was launched
by NOAA and NASA in late 2017 and began releasing data
in 2018 (NOAA, 2018). They generate data in 16 spectral
channels comprising of different wavelengths of light at a
high spatial resolution of 1-2 km? area and high temporal
resolution of 5 minutes. These minute-level satellite images
capture many atmospheric phenomenon, such as cloud mo-
tion, that are high predictive of solar irradiance at the surface
and can be used to infer solar PV output using ML (see Fig-
ure 1, Bansal & Irwin (2020a)). We develop self-supervised
deep learning models using CNN and LSTM to directly
learn to forecast future satellite observations at any site of
interest. Since satellite data is available in abundance, such
self-supervised objectives can enable training of accurate
deep learning models that implicitly capture local statistical
patterns over short intervals and provide accurate forecasts
of future observations at a site. When evaluated across 25
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Figure 2. Overview of our complete solar forecasting approach.

residential solar sites, spread across the U.S., we find that
these predictions prove useful in a simple auto-regressive
model to forecast site-specific solar PV output at 15 minutes
in the future, yielding errors close to an upper bound that
takes the true future satellite observations as input.

2. Modeling

In this section, we describe our complete methodology for
solar forecasting. We first describe our neural network
model for self-supervised learning on raw satellite observa-
tions. Then, we describe a simple auto-regressive model for
solar generation forecasting that can leverage forecasts from
the self-supervised model.

2.1. Self-supervised modeling of satellite data

Short-term forecasting of solar power needs to take into
account the recent changes to solar irradiation at the surface
and how it will evolve in a short span of time. For exam-
ple, cloud cover and movement is a key component that
determines the amount of down-welling solar irradiation.
Indeed, one of the prominent approach to solar modeling
and forecasting is through using coarse measurements of
cloud cover, called Okta (okt, 2019; Chen et al., 2018). This
is also the major source of error in current models as these
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measurements are coarse and imprecise (Chen et al., 2018;
Bansal & Irwin, 2020a;b). Bansal & Irwin (2020a) instead
showed that GOES visible bands are highly correlated with
solar irradiance at the surface, allowing accurate inference
of solar power through machine learning models trained on
historic generation data with GOES visible bands as inputs.

We seek to utilize this relationship (Fig. 1) for forecasting
by using deep neural networks to implicitly model the short-
term changes in the values of the visible bands of GOES. We
will use this model to forecast future values of the visible
channels which in turn will help in predicting solar genera-
tion, owing to this relationship between channel and solar
generation. Figure 2 shows an overview of our modeling
approach. Given a set of solar sites of interest, we consider
an area of w x h around the site and extract the 3 visible
channels of satellite data from the GOES-16 satellite. We
get a temporal sequence of w X h images over time from the
satellite, with the target site always at the center of the image
as this is a geo-stationary satellite. We consider sequence
of upto 5 such images at a time with an interval of 15 min-
utes between images, spanning an hour of satellite imagery
prior to the last image. Each 3D satellite image is processed
through a multi-layer convolutional neural network (CNN)
into a fixed d-dimensional representation at each time-step.
The sequence of CNN representations from each step are
then fed into a long short-term memory network (LSTM)
to capture the temporal evolution relevant for predicting
observations at future time-steps.

The final step output is from an LSTM, and, after process-
ing 4 sequences of images (1 hour), is passed through a
dense layer with sigmoid output units to predict the value
of the visible channels at the site location after 15 min-
utes. The CNN-LSTM model is trained end-to-end using
mean-squared error, with respect to the true future satellite
values, as the loss function. Note that we only train one
global model by combining satellite data across multiple
sites. This enables modeling of shared statistical properties
rather than overfitting to the peculiar characteristics of an
isolated site. Moreover, this also provides abundant data for
learning a useful CNN-LSTM model which typically don’t
work well with small datasets.

2.2. Solar generation forecasting

Given a trained CNN-LSTM model that can generate future
satellite observations at a given site, we aim to leverage
these predictions in a model for solar power forecasting at
any solar installation site of interest. Bansal & Irwin (2020a)
showed that the current channel value can be used to infer
the site-specific solar generation by training a simple regres-
sion model on historic data which helps correlate satellite
observations with solar installation specific characteristics.
We build on that finding by considering the following auto-

regressive model for forecasting near-term solar output:

Py = f(Pr, Cp, Tt) (D

where P; is the solar power generated, C; are the satellite
visible channel values and 7} is the temperature at time .
f () is a regression model, such as support vector regression,
that models the relationship between the input and output
variables using historical data. Temperature is an important
component of solar generation as solar panel efficiency is
sensitive to the surrounding temperature (Chen et al., 2018).
Note that we use C'y 1 instead of C} in (1). A major compo-
nent of change in P, from P, is captured in the change in
Cyy1 from Cy. This complex relationship is modeled using
our CNN-LSTM model, described above, which allows us
to predict C’t+1, an estimate of true channel values at ¢t + 1
to use in the auto-regressive model in (1).

3. Evaluation
3.1. Implementation and Evaluation Details

We use data for 25 solar sites across two years. Satellite data
for the entire continental U.S. is extracted for the 2019 year.
We restrict modeling to a 10x 10 window around the 25 solar
sites which constitutes the training data for the CNN-LSTM
model for compute efficiency. We average observations in
a 15-minute window, this helps reduce the sequence length
for modeling and noise in the data by reducing the number
of missing observations and sensor errors. This yields more
than 3 Million 5-step sequences of 10 x 10 images (with 3
channels) at intervals of 15 minutes. CNN model comprises
of 2 blocks of convolutions, where each block contains 2
convolution layers with 32 filters of size 3 x 3 and ReLU
activation followed by a max-pooling layer of size 2 x 2.
This is followed by two dense layers with hidden dimension
d = 256 and ReLU non-linearity between layers. We use
a one layer LSTM that takes these 256 dimensional inputs
and has a hidden dimension of 64.

We use 5-fold validation in all the experiments, splitting
by day so that test sets have entire days hold-out for eval-
uation. Solar generation data from the energy meters for
25 sites and temperature data from the weather station are
from years 2018-19. We restrict generation data to be from
9 am to 3pm every day, which is the peak duration of solar
generation. The metrics used are Mean Absolute Percentage
Error (MAPE) and Mean Absolute Error (MAE). MAPE,
often used to quantify the performance in prior work (Wang
et al., 2019), is an intuitive metric and is comparable across
solar sites of different installation size and configurations.
However, it is sensitive to periods to low absolute solar gen-
eration and can be significantly affected by small absolute
errors. We also used MAE to quantify the error in channel
modeling given that the first three channels are reflectance
values in the range of 0 to 1.
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Figure 4. MAPE of CNN and CNN-LSTM models for 15-minute
forecasts of first 3 satellite channels. Here step means the number
of time instants of the past values used.

3.2. Results

The first step to solar forecasting is channel forecasting us-
ing the CNN-LSTM model. Since the inputs are 3D images
of the area around a site, we first evaluate whether CNN
models will be more suited for this modeling compared to
simpler ML models. We compare using decision tree, ran-
dom forest and convolutional neural networks for modeling
single static images to forecast the next instant channel val-
ues. This is compared to a naive model which assumes there
will be no change to the channel values. In Figure 3, we can
see all the models’ performance as a function of the amount
of change in the absolute channel values between successive
time instants (x-axis). It is important to note that a simple
past predicts the future works the best when there are not
enough changes, but there is a need for accurate prediction
models when there is substantial change in the time series
data. In this case, CNN performs the best over all the other
models and will be the basis of subsequent modeling.

We next evaluate the performance of CNN-LSTM variants in
forecasting next time instant channel values. We explore the
following variants: CNN using 1-step static image, CNN-
LSTM using 1-step static image, CNN-LSTM using 2/3/4
steps in the past. Figure 4 shows our results compared with
the naive predictions. Incorporating multiple-steps of infor-
mation in CNN-LSTM is better than using the current static
image for forecasting, showing the utility of a deep auto-
regressive approach. We find that using 3 or 4 steps, i.e., 45
minutes or 60 minutes in the past, perform comparably.

The end goal of this work is to use these channel predic-
tions and translate them into an end to end solar forecasting

60

SVR(Cy) == SVR(Cyq) ==

50 |CNN-LSTM-SVR =3 Naive Model NN\ N
e 40 t
a0
<
= 20

10 §

0

0% 1% 5% 10% 20%

Percent Change in Solar
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model. We use the SVR auto-regressive model, discussed
in 2.2, to forecast 15-minute ahead solar generation. We
consider 4 different models to evaluate forecast at time ¢:
(1) Naive: this is again a simple past predicts the future
baseline; (2) SVR(C}): this is an upper-bound that uses
the ground-truth observation at the future instant and is not
a feasible forecast as C is unavailable ahead of time; (3)
CNN-LSTM-SVR: the same model however using the fore-
casted channel values from past values (Cy_1,Ct—2,Cy_3)
through the CNN-LSTM model (4) SVR(C;_1): using C; 1
as a naive forecast in instead of CNN-LSTM, this should
be a lower-bound if the CNN-LSTM model produces useful
forecasts. Results are in Figure 5, considering only summer
months, and in Figure 6 for the whole year. The performance
of forecasting solar using CNN-LSTM is close to using the
actual channel values in the model, an upper-bound, hence
showing that the approach is useful and accurate for solar
forecasting. We have further split the performance of these
models into percent changes between successive solar gen-
eration values as shown as on the x-axis where 0 means any
change and includes all the values whereas as 5% means a
change of at least 5% in subsequent values and so on. We
can also compare Figure 5 and 6 in that they both show
similar trends but only differ in the MAPE% which is higher
for full year and a little lower for only summer months.

4. Conclusion

This paper provides initial results for applying deep learning
to satellite data to perform site-specific solar forecasting.
We use deep auto-regressive models that combine CNNs
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and LSTM applied to spatio-temporal data from GOES-
R satellites. Our results are promising and show that 15
minute forecasts have an error near that of a solar model
using current weather. We plan to extend our results by
evaluating over larger areas and longer time horizons.
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