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Abstract
An impact of climate change is the increase in
frequency and intensity of extreme precipitation
events. However, confidently predicting the likeli-
hood of extreme precipitation at seasonal scales
remains an outstanding challenge. Here, we
present an approach to forecasting the quantiles
of the maximum daily precipitation in each week
up to six months ahead using the temporal fusion
transformer (TFT) model. Through experiments
in two regions, we compare TFT predictions with
those of two baselines: climatology and a cali-
brated ECMWF SEAS5 ensemble forecast (S5).
Our results show that, in terms of quantile risk
at six month lead time, the TFT predictions sig-
nificantly outperform those from S5 and show
an overall small improvement compared to cli-
matology. The TFT also responds positively to
departures from normal that climatology cannot.

1. Introduction
Extreme weather and climate events can severely impact
communities, infrastructure, agriculture and other natural
and human systems. The observed increase in frequency
and intensity of extreme events has been directly linked to
anthropogenic climate change, and the trend is expected to
continue in the coming years (Herring et al., 2021). Improv-
ing our understanding of the impacts of climate change on
weather and climate extremes and developing early warning
systems for better preparedness is of paramount importance.

This short paper is concerned with extreme precipitation
prediction, which can cause flooding, crop damage, and
widespread disruption to ecosystems. The ability to con-
fidently predict the likelihood of extreme precipitation at
sub-seasonal to seasonal scales remains a significant chal-
lenge (King et al., 2020). Recent works have shown that
statistical machine learning (ML) models can outperform
state-of-the-art dynamical models when predicting extreme
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events several months ahead (e.g., Chantry et al. (2021),
Cohen et al. (2019)). These ML models tend to rely on
slowly-changing variables, such as soil moisture and El
Niño-Southern Oscillation (ENSO) indices (Fernando et al.,
2019). Although most of these variables are publicly avail-
able, the degree of influence of each one regarding precip-
itation prediction varies in space and time (e.g., Strazzo
et al. (2019)). Properly accounting for these effects in a ML
model is a complex task.

In this work, we present an ML approach to forecast the
maximum daily precipitation in each week up to six months
ahead. Our approach uses the temporal fusion transformer
(TFT) model, which combines multi-horizon forecasting
with specialized components to select relevant inputs and
suppress unnecessary features (Lim et al., 2019). Of partic-
ular interest to both researchers and end-users, the TFT pro-
duces multiple quantiles. These quantiles offer a global view
of the interrelations between the input and output (Davino
et al., 2013) and can help risk management by indicating the
likely best and worst-case values of the target variable (Lim
et al., 2019). To the Authors’ knowledge, this is the first
time the TFT has been used to forecast extreme weather.

2. Methodology
We define our task as a quantile forecast for precipitation
in multiple locations. The structure is similar to the one
presented in (Lim et al., 2019), where the authors consider
three kinds of input: (a) static s ∈ Rms , (b) known future
x ∈ Rmx , and (c) historical z ∈ Rmz (Figure 1 – yellow,
pink, and blue, respectively). Static information does not
change through time, e.g., location or altitude. Examples
of known future information are the month-of-the-year and
external predictions for the target and other variables such as
precipitation and temperature. Although predictions are not
“known information” and may have errors, their use follows
the same procedure as future inputs. Finally, historical
inputs are the actual past values for the target series or any
other exogenous one, e.g., temperature or soil moisture.

We produce weekly forecasts for each location in the form
ŷlat,lon(q, t, τ), where each time-step t ∈ [0, T ] refers to
a specific week in the time series, and τ ∈ [1, 26] is the
lead time in weeks. The index (lat, lon) = i refers to the
location in the globe, and it is associated with a set of static
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inputs si, as well as the time-dependent inputs zi,t and xi,t.

We predict the quantiles 0.1, 0.5, and 0.9 of the maximum
daily rainfall for each week up to six months ahead in
our setup. Each quantile is represented by ŷi(q, t, τ) =
fq(τ, yi,t−k:t, zi,t−k:t, xi,t−k:t+τ , si) Although all quan-
tiles refer to the maximum daily rainfall in a week, we pay
closer attention to quantile 0.9 to focus on extreme events.

2.1. TFT model

The primary motivation of using the TFT model for our task
is its ability to handle multiple types of variables, i.e., static,
historical, and future. The model also provides other fea-
tures, such as simultaneous outputs for all τ time steps and
a modified multi-head attention mechanism that facilitates
the interpretation of the outputs. We intend to use the latter
in future work.

Figure 1 shows a summarized version of the TFT structure.
Level L1 creates input embeddings from both categorical
and continuous values. In Section 3 we describe all the input
variables used in our experiments. Level L2 processes each
input type individually and selects relevant input variables at
each step. Static encoders (yellow) integrate time-invariant
features into the network to condition temporal dynamics.
The sequence-to-sequence LSTM module learns short-term
temporal relationships, whereas the multi-head attention
block on level L4 captures long-term dependencies.

■ Month
■ Latitude
■ Longitude

■ Precipitation (target)
■ Soil moisture
■ Geopotential 500mb
■ Niño 3.4 index
■ 2m temperature climatology
■ Precipitation climatology

LSTM decoders
(future)

LSTM encoders
(historical)

Self attention
mechanism

Dense layer
(per step)

Future inputs
xi, t

Historical inputs
zi, t

Static inputs
si

Variable
selection

Variable
selection

Variable
selection

Embeddings
(categorical)

Embeddings
(real numbers)

■ Future ■ Static ■ Historical
Input types

L1

L2

L3

L4

Figure 1. Overview of the TFT architecture. It shows the types of
inputs: static (yellow), historical (blue), and future (pink). Main
components are: variable selection, LSTM encoders and decoders,
and the self-attention mechanism.

As in (Lim et al., 2019), we train the TFT model by jointly
minimizing the quantile loss, summed across all quantile
outputs:

L(Ω,W) =
∑
yt∈Ω

∑
q∈Q

τmax∑
τ=1

QL (yt, ŷ(q, t− τ, τ), q)

Mτmax
(1)

QL(y, ŷ, q) = q(y − ŷ)+ + (1− q)(ŷ − y)+ (2)

where Ω is the domain of the training data, which contains
M samples, W refers to the TFT weights, Q is the set of
output quantiles, and (.)+ = max(0, .).

The normalized quantile loss (q-risk) is used for validation
and testing:

q-risk =
2
∑
yt∈Ω̃

∑τmax

τ=1 QL (yt, ŷ(q, t− τ, τ), q)∑
yt∈Ω̃

∑τmax

τ=1 |tt|
(3)

where Ω̃ is the domain of the validation or test samples.

2.2. Baseline models

Climatology. Climatology is a simple model that is com-
monly used as a baseline for seasonal forecast skill. Here,
it is computed from historical values (1981-2010) of the
variable of interest and depends on the selected temporal
aggregation, e.g., monthly mean. We follow the steps in
Algorithm 1 to compute the climatology quantiles for precip-
itation (agg = max, op = quantiles), creating predictions
for each week of the year (1 to 53) for any given year.

Algorithm 1 Climatology - week
Input: data (1981-2010) x, aggreg. agg, operation op

agg ∈ [max,mean,min, ...]
op ∈ [mean, quantiles,max, ...]

week x← Aggregate x weekly, using the agg function
Initialize array climo, size = 53
for i = 1 to 53 do
week values← values for all weeks i in week x
climo[i]← op(week values)

end for

Calibrated ECMWF SEAS5. We also compare our predic-
tions to those from a calibrated ECMWF SEAS5 (hereafter
S5) seasonal forecast 50-member ensemble (Anon, 2019).
To compute the forecasted quantiles from the S5 ensemble,
we first aggregate the data to obtain the weekly maximum
precipitation and then calculate the quantiles across the 50
members for each week of interest.

3. Experiments
3.1. Data

We selected two regions to investigate: Rio de Janeiro
(Brazil) and Florida (USA). Besides precipitation, we con-
sider as inputs to the network: 2 m temperature, soil mois-
ture1, and geopotential height at 500 mbar (all from the

1volumetric soil water from 0 to 7 cm of depth
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location of the forecasts). This choice was based on past
work that used these variables in the context of rainfall
prediction (Fernando et al., 2019; Xu et al., 2020).

The literature also indicates that precipitation is consider-
ably affected by ENSO in Rio and Florida (Arguez et al.,
2019; Grimm & Tedeschi, 2009). To account for ENSO,
we consider the Niño 3.4 index prediction as a future input.
Currently, we are using Niño 3.4 index observations2 as if
they were predictions to train the networks, and we plan to
replace these with predictions from the S5 ensemble.

The data selected for observed precipitation was CHIRPSv2,
(Funk et al., 2015), a daily gridded dataset with a spatial
resolution of 0.05◦. For the other climate variables, we used
ERA5 reanalysis data for surface (Hersbach et al., 2018b)
and pressure (Hersbach et al., 2018a) variables. ERA5 is
also a gridded dataset but with resolution of 0.25◦. We
performed a spatial max-pooling operation to convert the
CHIRPSv2 data to the resolution of ERA5 (5×5 window),
which guarantees that the highest precipitation values for
each 5×5 window will not be smoothed out.

Precipitation, geopotential, and soil moisture are provided as
historical inputs to the network: 26 weeks of past values. We
consider the weekly mean for soil moisture and geopotential.
For temperature, we compute the weekly mean climatology
and provide it as a prediction. The precipitation climatology
(agg = max, op = mean) is also given as a future input.

Finally, we added some categorical variables: month as a
future input, and latitude and longitude as static inputs. The
idea behind these static inputs is to provide some spatial
information to the model. Figure 1 lists all the inputs.

3.2. Training

As the regions of interest contain numerous points (170 in
Rio and 248 in Florida), we divide each region into smaller
sub-regions and train a different TFT model for each. The
sub-regions have around 20-45 grid points each, a decision
based on preliminary results. Figure 2 shows the selected
grid points in Rio (3◦× 4.5◦) and Florida (6◦× 5◦).

We split the data into three non-overlapping ranges to define
our training (1981-2010), validation (2011-2014), and test
(2015-2019) sets. We perform hyperparameter optimization
with random search following the same scheme presented
by the TFT authors. The optimization is carried out for 60
iterations, and the list of hyperparameters includes dropout
rate, hidden layer size, minibatch size, learning rate (Adam
optimizer), maximum gradient norm, and number of heads.
Each TFT is trained with one Nvidia V100 GPU for 100
epochs (early-stopping patience of 5 epochs). The optimiza-
tion takes 3 to 4 hours to run with this configuration.

2http://www.jamstec.go.jp

Rio de Janeiro Florida

Figure 2. Selected regions and grid points in Rio de Janeiro (left)
and Florida (right). The grid points are divided into smaller sub-
regions, shown in different colors.

3.3. Evaluation

The TFT makes predictions for weeks 1 to 26, and here
we present results only for τ = 26, which means that we
remove the summations over τ in Eq. 3 and replace τ by
τ26. as it is both challenging and directly relevant to a
range of stakeholder applications. We compare the TFT
predictions with both climatology and S5 predictions. Since
the S5 spatial resolution is 0.4◦, we use nearest neighbors
interpolation to re-grid the data to the resolution of our
predictions (0.25◦).

4. Results and Discussion
Figure 3 shows the q-risk difference between the baseline
models and TFT for quantile 0.9: climatology - TFT (top)
and S5 - TFT (bottom). Positive values indicate the TFT
shows superior results (lower values of q-risk are better).
Compared to climatology, TFT has lower q-risks for most
locations. Compared to S5, TFT exhibits considerably lower
q-risk for all points – a substantial improvement.

In Table 1, we present the average q-risk difference between
the reference models and TFT. Regarding climatology, TFT
shows better results for all quantiles in Rio and quantile
0.9 in Florida. The average q-risk difference between S5
and TFT is significant for all quantiles in both locations,
especially for quantile 0.9, which is our main focus.

Although the average q-risks for quantile 0.9 seems to show
a small improvement compared to climatology, we highlight
that, for seasonal time scale, climatology is exceptionally
hard to improve upon (Vitart & Robertson, 2018). Further-
more, since climatology generates fixed predictions for all
years, it cannot capture sudden changes or departures from
normal.

Figure 4 illustrates the quantile predictions and target values
of the test set in a single location in Rio de Janeiro for all
models. With a relatively small q-risk improvement, one

http://www.jamstec.go.jp
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Figure 3. Q-risk comparison in Rio and Florida for quantile 0.9.
Top: q-risk(Climo) - q-risk(TFT). Bottom: q-risk(S5) - qrisk(TFT).

Table 1. Average q-risk difference for each quantile.

Comparison Region 0.1 0.5 0.9

climo - TFT
climo

Rio 2.45% 0.90% 1.08%
Florida -2.16% -0.41% 3.70%

S5 - TFT
S5

Rio 3.71% 11.18% 29.54%
Florida 5.70% 16.15% 41.87%

could argue that TFT is mimicking climatology. However,
the TFT predictions change considerably throughout the
years, contrasting with the fixed climatology behavior. We
draw attention to the TFT predictions for quantile 0.9 inside
the dashed box: TFT raised the quantile level during weeks
of very heavy rainfall while also responding to the periods
of decreased precipitation.

5. Conclusions
In this work, we used the TFT network to predict the max-
imum daily precipitation quantiles in a week out to a lead
time of 6 months. The TFT generated significantly improved
q-risks compared to the S5 model and marginal improve-
ments compared to climatology. Comparing the 0.9 quantile
prediction in one location in Rio, we have shown that TFT
can accurately raise the quantile level and also respond to
changes that climatology cannot. These results indicate
that TFT has an interesting potential for extreme rainfall
forecasting on the sub-seasonal to seasonal scale.

In the following steps, we want to modify the model’s input
to support 2D spatial information. That would allow us to en-
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Figure 4. Predictions and targets for the test set in the location (lat
-21.5, lon -41.75) in Rio. Top: Climatology. Middle: TFT. Bottom:
S5. In this location, the q-risk difference for quantile 0.9 between
climo and TFT was 1.9%, and S5 and TFT was 15.8%.

code neighborhood knowledge into the process. Additional
pre-processing, such as POD or graph networks, could also
capture teleconnections and include sparse datasets, such as
sea surface temperature that is only available over the ocean.
We also want to use the interpretable multi-head attention
block to identify connections between the input variables
and extreme rainfall.

The TFT has the ability to handle both historical data and
predicted future data, providing a ready-to-use architecture
for performing hybrid statistical-dynamical predictions. We
intend to incorporate other input variables, such as dynam-
ical model predictions, to investigate if they can improve
TFT results.
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