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Abstract

Climate change has caused reductions in river
runoffs and aquifer recharge resulting in an in-
creasingly unsustainable crop water demand from
reduced freshwater availability. Achieving food
security while deploying water in a sustainable
manner will continue to be a major challenge ne-
cessitating careful monitoring and tracking of agri-
cultural water usage. Historically, monitoring wa-
ter usage has been a slow and expensive manual
process with many imperfections and abuses. Ma-
chine learning and remote sensing developments
have increased the ability to automatically mon-
itor irrigation patterns, but existing techniques
often require curated and labelled irrigation data,
which are expensive and time consuming to ob-
tain and may not exist for impactful areas such as
developing countries. In this paper, we explore
an end-to-end real world application of irrigation
detection with uncurated and unlabeled satellite
imagery. We apply state-of-the-art self-supervised
deep learning techniques to optical remote sensing
data, and find that we are able to detect irrigation
with up to nine times better precision, 90% better
recall and 40% more generalization ability than
the traditional supervised learning methods.

1. Introduction

Water is essential for global food production and security,
agriculture being the largest consumer of freshwater glob-
ally (WWDR, 2014). While we need water to grow crops
to address the growing demand for food, excessive use of
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water has negatively impacted ecosystem and adversely af-
fected crop production and livelihood. Ground truth data
on agricultural water demand, traditionally gathered from
local surveys, are often inadequate and do not capture the
temporal signature and dynamics of irrigation patterns (Graf,
2020). Irrigated land is difficult to track in underdeveloped
countries due to lack of infrastructure and government poli-
cies around water usage.

Detecting irrigation is critical to understand water usage and
promote better water management. Such data will poten-
tially enable the study of climate change impact on agricul-
tural water sources, monitor water usage, help detect water
theft and illegal agriculture and inform policy decisions and
regulations related to water compliance and management.
This is a particularly hard problem to solve due to the lack of
curated and labelled data available that are centered around
irrigation systems. BigEarthNet-S2, for example, is a small
fraction of the 26 TB of data produced daily by the European
Space Agency, and required several million dollar grants to
curate and label [3].

The small sample of labelled datasets currently available
are from developed countries and supervised learning from
these may not generalize to developing and under developed
countries. In this report we investigate the problem of irriga-
tion detection using self-supervised learning on high resolu-
tion multi-spectral satellite images that were collected for
monitoring of land, vegetation, soil and water cover. We re-
search whether pre-training with contrastive self-supervised
learning from uncurated satellite images of one geography,
followed by fine-tuning with a small fraction of publicly
available labelled data from a different geography, has the
generalization ability to both detect irrigated land from the
first geography and also from entirely different geographical
regions.

2. Methodology

We use the following machine learning pipeline to build an
irrigation detection system: (1) We pre-train a deep neural
network using a large amount of unlabeled data from a ge-
ographic area of interest, i.e. where we would like to do
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irrigation detection. (2) We fine-tune the network using pub-
licly available labeled satellite image datasets that contain
irrigation labels. (3) We apply the irrigation detection sys-
tem to the geographic area of interest used for pre-training
in (1.). For (1.) we use the SImCLR framework(Chen
et al., 2020a;b) because it consistently outperformed previ-
ous methods for self-supervised and semi-supervised learn-
ing on ImageNet, without requiring specialized architec-
tures.

3. Data

The data for our research are Sentinel2 surface reflectance
images collected from three sources. We use Sentinel2
archive of level2A images of the Central Valley region of
California as our unlabelled source for self-supervised pre-
training. Central Valley is one of the most productive agri-
cultural regions in the world [1]. The Central Valley is
home to more than 7 million acres of permanently irrigated
land and houses many major cities such as Sacramento
and Fresno, providing a diverse mix of irrigated and non-
irrigated land for our study [2].

BigEarthNet-S2 (Sumbul et al., 2019), a large scale bench-
mark archive for remote sensing image understanding from
ten European countries, is used in our experiments for super-
vised training and evaluation. For evaluating model general-
ization, we use Sentinel2 images of ground truth coordinates
spanning six different countries from croplands.org(Zhong
et al., 2017; Oliphant et al., 2017; Gumma et al., 2017;
Xiong et al., 2017).

4. Experiments

We established our baseline using traditional supervised
learning approaches on the BigEarthNet-S2 data. Our target
label is a binary variable indicating whether the land in the
image is permanently irrigated or not. We conducted several
experiments by varying different parameters: (i) size of the
CNN architecture, (ii) training from scratch versus using
pretrained ImageNet weights (iii) size of the training data.
We use varying training data sizes of 190, 570, 1902, 4756,
9515 and 19024 records balanced between the two target
classes. We also refer to these as data split percentages of 1,
3, 10, 25, 50 and 100 respectively.

4.1. SimCLR-S2 Model

We call our adaptation of the SimCLR framework to Sen-
tinel2 images, SimCLR-S2. While the original SimCLR
implementation uses only the 3 visible RGB channels, we
have access to 10 channels (bands) in our data. Some of
these, like infrared bands, provide information about the
presence of moisture due to vegetation. We therefore con-
sider using all 10 bands throughout training and inference.
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Figure 1. A comparison of stage-2 fine-tune results of SimCLR-
S2 with supervised baseline for the different data sizes (given by
split percentage with 1% having 190 training records). SimCLR-
S2 models (i) consistently outperform supervised baseline scores
pretrained with ImageNet weights and (ii) outperform baselines
scores when trained from scratch on smaller sizes of annotated
data (1% and 3% splits)

The SimCLR-S2 framework has three stages. The first
stage takes an unlabeled dataset and creates a mini batch
of images. For each image in the mini batch, we perform
two image augmentations, picked at random from a list
of transformation pairs, and compute the contrastive loss
between any two images in the mini batch with an objective
to minimize the contrastive loss across the entire dataset.
In the second stage, the pretrained self-supervised model
is fine tuned with a small labelled dataset for the task of
identifying irrigated land versus non-irrigated land. In the
third stage, the fine tuned model is then used as a teacher
in a knowledge distillation process to teach labels for an
unlabeled dataset on a student network of the same size or
smaller. The student network bootstraps from the teacher
network, learning nuances from the teacher, resulting in
performance equal to or better than the teacher model, even
on smaller networks.

Since BigEarthNet is our only source of annotated data, we
use 3% of its labeled data for evaluation. We performed sev-
eral experiments with variations in: data used for unsuper-
vised pretraining; data used in supervised fine-tuning; and
CNN architectures used in self-training distillation stages.
We then compare the results for these experiments with the
supervised baseline results.

4.1.1. HYPER-PARAMETER TUNING

We evaluated training SimCLR-S2 with the SGD and Adam
optimizers. With SGD optimization with cosine decay,
the contrastive loss did not decrease throughout training,
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while with the Adam optimizer, we observed decreasing
contrastive loss curves. As a result, we selected the Adam
optimizer for our pipeline. A learning rate of 0.0005 had
the best performance with the Adam optimizer.

5. Evaluation Methods and Results

We conducted two types of evaluations to compare the per-
formance of SimCLR-S2 model to that of the supervised
baseline model. We evaluated the F-1 scores of predictions
from both models on held-out data from BigEarthNet-S2
dataset. This test data was not a part of the training process.
However, because both the test and training data are from
the same region i.e. Europe, we evaluate the generaliza-
tion ability of the self-supervised vs supervised models by
comparing: (i) the precision scores on an unlabelled set
of Sentinel2 images (ii) the recall scores on Sentinel2 im-
ages for known irrigated land co-ordinates from different
countries.

5.1. Results on BigEarthNet-S2 hold out data

The results from our fine-tuning experiments showed that
the SimCLR-S2 model outperformed the supervised base-
line on smaller data sizes. This is evidenced in figure 1,
where for 1% of data splits, the F-1 scores were better or on
par with that of the supervised learning. Our SimCLR-S2
model consistently outperformed the supervised model that
was pretrained with ImageNet weights.
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Figure 2. A comparison of stage-3 distillation results of SimCLR-
S2 with supervised baseline for different architectures (in num-
ber of million parameters) for training data size of 190 records.
SimCLR-S2 models outperform supervised baseline scores across
architectures.

We took each ResNet152 model fine-tuned across the var-
ious data splits and performed distillation learning on five
model architectures. We found that even the smallest model

Xception, with 22.9 million parameters, saw an improved
F-1 score for data splits from 3% and above, and with
larger models accuracy over the fine-tuned teacher model in-
creased across the board. We suspect that the freezing of the
convolutional layers during the fine-tuning process resulted
in their poorer performance compared to the student models,
which had all layers enabled for distill learning. Distillation
scores were better than those of supervised baselines for
smaller data sizes on many architectures. As evidenced by
Figure 2, for the 1% data split SimCLR-S2 outperformed
the supervised baseline across the board.

5.2. Results on generalizability tests

We ran two case studies to check for generalizability of our
SimCLR-S2 model. In one, we tested for model precision
on an unlabelled test dataset and in the second one, we tested
for model recall on a labelled test dataset. To demonstrate
that the model generalizes well, we used data from diverse
geographies different from the geography that the model
was trained on.

5.2.1. PRECISION

For precision, we evaluated Sentinel2 images of unlabelled
data from California, USA on our SimCLR-S2 fine-tuned
model. We took the top 100 images that our model pre-
dicted as irrigated with at least 99% confidence. We then
visually inspected these images to score the precision. We
crowdsourced the visual inspection using Amazon Mechan-
ical Turk and did an additional visual verification of the
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Figure 3. A comparison of accuracy with and without distillation
across different data sizes for different architectures (in number of
million parameters).Most distilled models perform on par or better
that a simple finetuned model (i.e. without distillation) across data
sizes even on smaller architectures.
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Table 1. A comparison of precision scores from SimCLR-S2 and
supervised baseline on unseen data from different geography.

Training data size | Precision Precision (su-
(num records) (SimCLR-S2) | pervised)

190 0.99 0.11

570 1.00 0.2

1902 0.99 0.36

4756 0.98 0.95

9515 1.00 0.78

19024 1.00 0.47

scores to ensure that the survey responses aligned with our
expectations.

To compare these scores with our supervised baseline, we
performed similar evaluation and visual inspection with
our supervised baseline model. An interesting observation
we made was that prediction confidence of the supervised
baseline was far lower than that of the SImCLR-S2 model.
While we could determine the top 100 predictions with a
minimum confidence threshold of 99% with SimCLR-S2
models, with the supervised models we had to drop the
threshold to 50% to obtain the top 100 predictions. Table
1 shows the median precision scores. SImCLR-S2 model
consistently outperformed supervised baseline in all the data
splits indicating that our generalized well on unseen data
(see Figure 5 in the supplementary material).

5.2.2. RECALL

For recall, we chose to evaluate our models’ prediction
against global crowdsourced ground truth data from crop-
lands.org. We sampled 100 irrigated cropland coordinates
spanning 6 different geographies: Brazil, India, Indonesia,
Myanmar, Tunisia and Vietnam. Since the ground truth
data is not verified at source, before processing, we visually
inspected the raw images to ensure that they looked like irri-
gated cropland. We then compared our model predictions to

Table 2. A comparison of recall scores on SimCLR-S2 and super-
vised baseline for irrigated cropland from diverse geographies

Country Training | Recall Recall (su-
data (num | (SimCLR-S2) pervised)
records)

Brazil 190 0.75 0.5

India 190 0.9 0.67

Indonesia | 570 0.76 0.07

Tunisia 570 0.78 0.91

Vietnam, 190 0.9 0.00

Myanmar

the original target label to compute recall.

Our results demonstrated that SimCLR-S2 model general-
ized well across geographies. A model trained with just a
fraction' of the overall annotated data for the task at hand,
was able to outperform the supervised baseline model, in
most cases, as evidenced by the recall scores in table 2.

6. Conclusion

SimCLR-S2 is successful in detecting irrigation in multi-
spectral images, as evidenced by our results. Through our
experiments, we showed that SimCLR-S2 can be used on
satellite imagery consisting of several more channels than
in typical computer vision applications; and performs better
than supervised models in certain scenarios. Our results
demonstrated that the SimCLR paradigm consistently out-
performed supervised learning using significantly smaller
sizes of labelled data, and that these improvements can be
distilled into smaller models with fewer parameters. We also
show that the SimCLR-S2 model generalizes well across
diverse geographies. Where manual annotation is expen-
sive and time consuming, we showed that real-world, un-
curated classification tasks of satellite images benefit from
contrastive self-supervised learning to perform image clas-
sification using a significantly smaller fraction of labelled
images, while still achieving better results than supervised
learning methods.

We identify a few areas for future work. While we per-
formed all training with a fixed number of training epochs
(50), previous works done by Chen et al(2020b) indicated
they trained on as many as 800 epochs for unsupervised pre-
training. We also acknowledge that during our investigation
into the most effective augmentations to pair for training,
a larger subset of the training data, and more epochs, may
have been beneficial. The SImCLR-S2 model, with these
improvements, could pave the path for a new state of the art
in detecting and tracking global irrigation data using high
resolution satellite imagery.
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1. Background

Vision models have traditionally been trained using labelled
datasets, and the manual process of annotating data does
not scale well. It is time consuming, expensive, often re-
quiring expert knowledge and can be subjective to a user,
making it a potential bottleneck to successfully training
models. In this digital age, unlabelled data is ubiquitous,
however unsupervised models do not perform as well as su-
pervised models. Learning effective visual representations
without human supervision has been a persistent problem.
Discriminative approaches based on contrastive learning
have recently shown great promise in achieving state-of-the
art results (?), (?). These methods train networks to perform
pretraining tasks where both inputs and labels are derived
from unlabelled data.

2. Sentinel-2 Mission

Sentinel-2 (S2) is an Earth observation mission operated by
the European Space Agency and acquires optical imagery at
a high spatial resolution of 10 to 60 metres(m) over land and
coastal waters. The S2 multispectral instrument includes 13
bands, which are captured at different spatial resolutions.
S2 Super-resolution creates a 10 m resolution band for all
the existing spectral bands (including those with 20 m and
60 m) using a trained convolutional neural network (CNN).
This processing block’s output is a multispectral 12 band,
10 m resolution GeoTIFF file. The first band i.e. Bl is
discarded since it’s only useful for atmospheric correction'.
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3. Data Preprocessing

We download large swaths of satellite images measuring
approximately 600 square kilometres in area. In all, we
download images that cover roughly 50,000 square kilome-
tres of area from Chicos to Bakersfield in Central Valley.
We match the bands that we have from BigEarthNet, which
excludes bands 1 and 10. Since each BigEarthNet image
patch covers 1.44 square kilometres, we further split each
of our downloaded images for all bands to 120 x 120 pixels.

We implemented our modeling pipeline using Tensorflow.
Before feeding our data into our models, we processed the
images to convert them into the TFrecord data format. We
additionally calculated the mean and standard deviation
for each band across the California dataset, and used the
provided statistics for the BigEarthNet dataset. Applying
this normalization step added the advantage of bringing
each band’s data to a similar range which allowed us to
perform image augmentations across the whole image rather
than having to apply unique or custom augmentations per
channel. We performed further processing on the California
dataset to avoid null values due to cloud cover and cloud
shadows.

permanently irrigated land,
sclerophyllous vegetation,
beaches, dunes, sands,
estuaries, sea and ocean

§ permanently irrigated land,
vineyards, beaches, dunes,
sands, water courses

Figure 1. Sample of images and labels from BigEarthNet-S2
dataset
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Table 1. Mapping of data split percentages to training records

SPLIT PERCENAGE  NUM. OF TRAINING RECORDS

1 190

3 570

10 1902

25 4756

50 9515

100 19024
4. Results

4.1. Additional Observations

A distribution of our performance scores across all of 336
working self-supervised models, showed that the SimCLR-
S2 models brought the F-1, accuracy and AUC scores closer
together across different data sizes and CNN architectures.
The variability of these scores were much higher with su-
pervised learning as evidenced in figure 2 in the appendix.
All of our SImCLR-S2 models had an AUC score higher
than 0.72, independent of training data or model sizes. The
mean AUC score across all SimCLR-S2 models was around
0.83 indicating that SimCLR-S2 models were effective in
detecting permanently irrigated land. Supervised learning
on the other hand had models with AUC scores as low as
0.5. We also observed that the mean F-1 score between
SimCLR-S2 and supervised models was the same.

A t-SNE heat map of our SImCLR-S2 pretraining model
depicted in figure 14 showed clear indication of dense zones
of clustering in both irrigated (image to the left) and non-
irrigated classes (image to the right). We believe that train-
ing the models for longer than 50 epochs could potentially
help with further separation of these clusters.

== SimMCLR-S2 f1 == SiMCLR-52 accuracy = SimCLR-SZ AUC
= Supervised f1 == Supervised accuracy — Supervised AUC

00 02 04 06 08 06 07 Y 05 06 07 08

(a) F1 Score (b) Accuracy (c) AUC Score

Figure 2. Distribution of F-1, accuracy and AUC scores for the
supervised and SimCLR-S2 experiments
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Figure 3. Top 100 irrigated land predictions by SimCLR-S2 model on 1% data split
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Figure 4. Top 100 irrigated land predictions by supervised baseline model on 1% data split

Figure 5. A comparison of top 100 irrigated land predictions by SimCLR-S2 vs supervised baseline on 1% training data size i.e. on 190
records. A visual inspection clearly shows that the SimCLR-S2 results outperform that of the supervised baseline
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Unsupervised pretraining

Projection
head —— A Self-training /
ﬁ —- — Distillation of

fine-tunin i
9 task predictions
ask-specific
CHNN

Unlabeled
data

Task-agnostic
Big CNN

Small fraction of
data that has
class labels

Unlabeled
data

Figure 6. SimCLRv2 Framework showing the use of labelled and
unlabelled data. SimCLR-S2 is implemented using this framework

Table 2. Data strategy for SImCLR-S2 experiments

Central Valley, California

Year 2019-2020 2017-2018
General Info Image Size 120 x 120 x 10 120 x 120 x 10
Source sourced using Google Earth Engine API http://bigearth.net/

Data Size 50,194 575,579
Pre-Training

Labelled No No
Fine Tuning/ Data Size n/a Varying (230 to 23100)

Supervised Learning
Labelled n/a Yes
Data Size nfa 14,747

Labelled n/a Yes
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Figure 7. F-1 score for transformation pairs
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Figure 8. A comparison of stage 2 fine-tune results of SimCLR-S2 with supervised baseline
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Figure 9. Distillation shows an improvement over fine-tune scores for many architectures and many data split percentages
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Figure 10. Adam optimizer with different learning rates
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Figure 11. Pre-training loss with SGV vs Adam optimizer

Figure 12. Hyper parameter tuning for reducing contrastive loss in unsupervised pretraining step
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Figure 13. Labelled t-SNE of SimCLR-S2 latent vectors
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Figure 14. Heatmap

Figure 15. Dimensionality reduction of the SImCLR-S2 latent vectors usng t-SNE, with labelled results and heatmaps indicating the
results of contrastive loss on the latent space of our pretrained model.



Supplementary Material: Self-supervised Contrastive Learning for Irrigation Detection

Accuracy for 1% data by model size

10
08 1
= 06 4
=
5
§ 04 r
—— Sam{LR-52 BEN
02 1 — smcins2 CA_adam
—— SamCLR-52 CA_sgd
—— mupervized
00— T T T T v T T v
719 ™ 3B 25 6™ as BT goa™
model parameters
itn F1 scores for 1% data by model size
081 — —
" 06 4
2
2 o4
— SHCLR.52 BEN
02 1 — sunciR-s2 cA_adam
—— SmCLA-S2 CA_sgd
— RUpRrvised
0o - T T T T T ' -
g22 ™ 3BT 256 ™ aa & T o0 AT

madel parameters

Figure 16. Performance of distill vs supervised baseline scores for
1% data splits
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