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Abstract
Understanding the dynamics of deforestation as
well as land uses of neighboring areas is of vi-
tal importance for the design and development
of appropriate forest conservation and manage-
ment policies. In this paper, we approach defor-
estation as a multi-label classification problem
in an endeavor to capture the various relevant
land uses from satellite images. To this end, we
propose a multi-label vision transformer model,
ForestViT, which leverages the benefits of self-
attention mechanism, obviating any convolution
operations involved in commonly used deep learn-
ing models utilized for deforestation detection.

1. Introduction
Deforestation/land-use changes have impact in greenhouse
gas emissions and are major drivers of regional climate
change (de Bem et al., 2020). Human activities are among
the main causes of global deforestation. The expansion of
agriculture is a major driver of deforestation, with the con-
struction of infrastructures such as roads or dams, together
with mining activities and urbanization, constitute the main
causes of deforestation. Identifying these driving forces
of deforestation (agriculture, urbanization, infrastructures,
etc.) of primary forest loss using satellite images is challeng-
ing, mainly due to the heterogeneity of the various drivers
within images. Land uses located nearby a forest often act as
driving forces of deforestation for these remaining forests.
Understanding the dynamics of these changes can assist
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planning future conservation actions to prevent or mitigate
adverse impacts. In this work, we formulate deforestation
as a multi-label classification problem attempting to capture
the various land uses related to deforestation.

Transformers (Vaswani et al., 2017) have recently demon-
strated very good performance in a wide range of time-
dependent applications. Transformer architectures are based
on a self-attention mechanism that learns long-range tempo-
ral dependencies between elements of a sequence in the 1D
space. Thus, the self-attention layers consider causality in
a given sequence by learning the relationships between the
token set elements. In the 1D space, transformers replace
successfully the recurrent operations that process one local
neighborhood at a time (Wang et al., 2018) and search for
dependence (locally) at its previous time-related element.
Moving from time (1D) to 2D space, the recently proposed
vision transformer (Dosovitskiy et al., 2020) is an interesting
attempt to showcase how (convolution-free) transformers
can replace standard convolutions in deep neural networks
in a similar manner transformers replace recurrent neural
networks in 1D. There, attention mechanisms detect non-
localized patterns and long-range pixel inter-dependencies
(long-range spatial dependencies) (Cordonnier et al., 2019),
(Wang et al., 2021). Vision transformers are applied on
large-scale computer vision datasets, forming a CNN-free
image classification model, able to capture long-range spa-
tial dependencies.

1.1. Paper contribution

We propose, design and train a vision transformer model to
identify the driving forces of deforestation of primary for-
est loss using satellite imagery in Amazon rainforest. This
task is challenging to automate due to the heterogeneity
of drivers within images and driver classes and the rapid
evolution and changing of landscapes. Our model signif-
icantly benefits from multi-label image classification that
simultaneously assigns multiple labels related to drivers of
deforestation in near-the-forest areas in an image. Further-
more, vision transformer is exploited here as an efficient
and scalable structure (Dosovitskiy et al., 2020) with multi-
head attention mechanisms that derive long-range contex-
tual/spatial relation between different areas in images (Bazi
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Figure 1. ForestViT is inspired by the vision transformer idea from (Dosovitskiy et al., 2020) and the encoder part of the NLP Transformer.

Figure 2. Per-class recall and F1-score evaluation of ForestViT, ResNET, VGG16, DenseNET and MobileNET models.
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et al., 2021). Combining the multi-label classification mech-
anism along with the vision transformer architecture, the
ForestViT model exploits the complex dependencies among
visual features and labels (Lanchantin et al., 2020) in a satel-
lite image, identifying forest areas at risk of greater levels
of deforestation.

2. Multi-label classification deforestation
Multi-label classification (MLC) for deforestation detec-
tion in satellite images, refers to the task of assign-
ing multiple labels to satellite images. Let us de-
note by I = (I1, . . . , IN ) ∈ I, ∀i = 1, ..., N a
set of images, then assuming the label vector y =
(y1, . . . , yM ) ∈ Y = {0, 1}M ,∀j = 1, ...,M , where C =
c1, . . . , cM , M = |C| is a finite set of predefined classes,
the purpose is to decided the subset of classes that are
found in the i− th image through a learning process. Each
label attribute yj corresponds to the absence (0) or pres-
ence (1) of each class cj . The classes are related to de-
forestation, land use and mangrove deforestation factors.
In contrast to multi-class learning, alternatives are not as-
sumed to be mutually exclusive, such that multiple classes
may be associated with a single image (Mencı́a & Janssen,
2016). The problem at hand is to detect the multiple classes
of an image related to deforestation. Let H : I −→ Y
be a multi-label classifier that estimates the label subset
of ŷ = (ŷ1, . . . , ŷM ) that comprises of various land use
classes that appeared in each instance-image xi ∈ X . Thus:
ŷ = (ŷ1, . . . , ŷM ) = H(xi;W ).

3. ForestViT for deforestation detection
Fig. 1 depicts a schematic overview of the proposed
ForestViT. The standard Transformer receives as input a 1D
sequence of token embeddings. To handle 2D images, we
reshape image I ∈ Rh×w×b into a sequence of flattened 2D
patches Ip ∈ R n×(p2·b), where (h,w) is the spatial resolu-
tion of the original image, b is the number of bands/channels,
(p, p) is the resolution of each image patch, and n = h·w

p2 is
the resulting number of patches, which also serves as the
effective input sequence length for the Transformer. We
map the vectorized patches Ip into a latent D-dimensional
embedding space using a trainable linear projection. To
encode the patch spatial information, we learn specific po-
sition embeddings which are added to the patch embed-
dings to retain positional information as follows (Dosovit-
skiy et al., 2020): z0 = [Icj ; I

1
pE; I2pE; ...; InpE] + Epos

where E ∈ R(p2·b)×D is the patch embedding projection,
and Epos ∈ R(n+1)×D denotes the position embedding.

Then, the resulting sequence z0 of embedding entities
x = (x1, ..., xn) serves as input to the transformer encoder.
The transformer encoder has L encoder layers, and each

encoder layer is composed of an multi-head self attention
layer (MSA) and a feed-forward layer. The MSA layer con-
sists of several attention layers running in parallel (Vaswani
et al., 2017). The goal of self-attention is to capture the
interaction among all the embedding entities x by encoding
each entity in terms of the global contextual information.
The output z is normalized using softmax operator to get
the attention scores. Each entity then becomes the weighted
sum of all entities in the sequence, where weights are given
by the attention scores.

In order to encapsulate multiple complex relationships
among different elements in the sequence, the multi-head
attention mechanism in every l-layer, comprises h− self-
attention blocks. Each block has its own set of learnable
weight matrices. For an input −x, the output z of the
h− self-attention blocks in multi-head attention is then
concatenated into a single matrix [z0l , z

1
l , ..., z

H−1
l ] where

h = 0, ..., (H − 1) and projected onto a weight matrix W .
Therefore the output of the l-th multi-head self-attention
(MSA) layer is: z′l = MSA(LN(zl−1))+zl−1, l = 1...L
where LN(·) denotes the layer normalization operator and
zl is the encoded image representation. Then, a fully con-
nected feed-forward dense block follows in every encoder
block zl = MLP (LN(z′l)) + z′l, l = 1...L Lastly, a
multi-label classifier makes the final predictions ŷ (see Fig.
1). We use a feedforward network (FFN) with two dense
layers and a sigmoid activation function ŷ = FFN(z0L)

4. Experimental evaluation
We compare our proposed convolution-free ForestViT
model with traditional deep learning models that have con-
volutional layers as core structure, such as: VGG16 (Loh
& Soo), ResNet50 (Budianto et al., 2017), DenseNET121
(Ching et al., 2019), and MobileNET (Howard et al., 2017),
which are widely used models for remote sensing and de-
forestation applications or used as baseline to evaluate var-
ious vision transformers structures. The hyperparameters
of these baseline models in our multi-label experiment are
the VGG16, ResNet50, DenseNET121, and MobileNET
with the image size and batch size hyperparameters equal to
256x256 and 128 respectively.

We utilize a dataset (https://www.kaggle.com/c/
planet-understanding-the-amazon-from-space/
data) published in a Kaggle competition (by Planet com-
pany). All of the images derived from the Amazon basin.
In our experiment, the images are classified in 14 classes
and the labels are broken into three groups: atmospheric
conditions, common land cover/land use phenomena, and
rare land cover/land use phenomena. Here, each entry is
assigned to one or more classes.

https://www.kaggle.com/c/planet-understanding-the-amazon-from-space/data
https://www.kaggle.com/c/planet-understanding-the-amazon-from-space/data
https://www.kaggle.com/c/planet-understanding-the-amazon-from-space/data
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Classes
Techniques 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ForestViT 95.1 96.7 88.2 95.0 84.1 92.1 86.7 87.1 99.6 96.9 99.9 99.7 99.1 99.7

(Budianto et al., 2017) 95.2 96.5 85.4 93.7 81.4 90.3 83.8 85.2 99.6 96.6 99.8 99.5 99.1 99.7
(Loh & Soo) 94.0 94.6 86.6 91.5 88.4 89.6 87.7 86.3 99.6 94.5 99.8 99.4 99.0 99.7

(Ching et al., 2019) 94.5 95.2 84.0 93.7 80.0 89.2 83.3 83.8 99.6 96.4 99.8 99.4 99.1 99.7
(Howard et al., 2017) 94.9 96.3 82.6 91.8 77.8 88.6 81.9 82.9 99.6 94.1 99.8 99.3 99.1 99.7

Table 1. Per-class accuracy evaluation of ForestViT, ResNET, VGG16, DenseNET and MobileNET models.

Techniques Overall Prec. Overall Rec.
ForestViT 0.80 0.94

(Budianto et al., 2017) 0.77 0.93
(Loh & Soo) 0.78 0.92

(Ching et al., 2019) 0.75 0.92
(Howard et al., 2017) 0.74 0.91

Table 2. Micro-averaged recall and precision metrics for ForestViT,
ResNET, VGG16, DenseNET and MobileNET.

4.1. Implementation details

Image Generator. The dataset was split in 50/20/30
train/valid/test sets using an image generator. The images
with size [256 × 256 × 4], where the last channel is the
Near Infrared in our case, are re-scaled to [0, 1]. Then, each
image was divided into patches of size [16× 16× 4].

Vision Transformer Encoder. The Vision Transformer
encoder accepts the images as input and produces a 14× 1
tensor containing each label’s probabilities as output. The
last activation function is sigmoid, so that each distinct prob-
ability in the output tensor can take values in [0, 1] regardless
of the probabilities of the rest of the labels (multi-label clas-
sification problem). The transformer encoder consists of
encoder blocks. Each encoder block contains two sublay-
ers: multi-head self-attention and positionwise feed-forward
networks, where a residual connection followed by layer
normalization is employed around both sublayers. Our im-
plementation contains 4 transformer encoder blocks, each
one with an eight-head self attention mechanism.

Training process and optimization. We used Adam opti-
mizer with a learning rate of 1e−4 and binary cross-entropy
loss function. The training process of the model ran on
a GTX 1060 6GB on a laptop. The training process took
around 42 epochs to finish (max allowed epochs was 50).

4.2. Evaluation of Deep Learning techniques for
deforestation detection

Per-class analysis. Table 1 demonstrates the proposed
model performance over the unseen (test) data. To verify the

performance of our self-attention models, we use the unseen
(test) set to assess the model performance to data totally
outside the training phase. The results have been obtained
using the accuracy objective criterion (see Section 4.2) for
the tested set, separately for each category. We can see that
high-performance results are obtained. Our convolution-
free ForestViT model has slightly better results compared
to ResNet VGG16, DenseNET and ModileNet approaches.
Diving into the the different classes of the deforestation
dataset, the per-class recall and F1-score objective criteria
are depicted in Fig. 2.

The ’hazy’, ’primary’, agriculture’, ’clear’, ’water river’,
’cloudy’, ’partly cloudy’ classes appear the best perfor-
mance compared to the ’habitation’, ’road’, ’cultivation’
and ’artisinal mining’ ones, that appear lower performance
classification. The performance classification for the ’con-
ventional mining’ and ’selective logging’ classes, that are
rarely appeared in the dataset, is lower than the accuracy
achieved in above mentioned classes. However, the perfor-
mance of ForestViT is quit good compared to the perfor-
mance achieved using most of the state-of-the-art models
(e.g., DenseNET, MobileNET, ResNET, and VGG16 net-
works).

Model’s overall accuracy assessment. In Table 2, we
report the micro-averaged recall and precision metrics on
the test set for ForestViT, ResNET, VGG16, DenseNET,
MobileNET networks. Given that the micro-averaged multi-
label performance metrics are defined by averaging over
both labels and examples, they adequately capture the per-
class performance imbalance, also observed in Fig. 2. Thus,
the overall precision expressed as micro-averaged precision,
is averaged down to 0.80 for ForestViT and < 0.80 for the
other models used for comparison.

5. Conclusions
The fact that the human landscape is rapidly evolving em-
phasizes the need for the analysis of deforestation data,
the update of deforestation risk maps and the appropriate
adaptation of mitigation strategies. In order to capture co-
occurrence patterns among labels, this paper proposes a
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multi-label vision transformer classifier, ForestViT, to de-
tect dependencies among the output variables. We show
that the self-attention between neighboring image patches in
ForestViT and without any convolution operations achieves
superior performance in multi-label classification of defor-
estation images compared to state of the art deep learning
models.
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A. Performance metrics
We employ several metrics to comparatively evaluate the
proposed and existing methods.

Per-class accuracy. In order to objectively evaluate our
results, the metrics of accuracy and recall are considered.
Accuracy (ACCci ) is defined as:

ACCci =
TPci + TNci

TPci + TNci + FPci + FNci

(1)

where the nominator contains the true positives (TPci ) and
true negatives (TNci ) samples, while denominator contains
the TPci and TNci and false positives (FPci) and false
negatives (FNci). Precision (PRci), recall(RECci) and
F1-score (F1ci ) are given as:

PRci =
TPci

TPci + FPci

, RECci =
TPci

TPci + FNci

(2)

F1ci =
2 · PR ·REC

PR+REC
(3)

Overall accuracy. To measure the effectiveness in a multi-
label classification problem, averaging metrics is also re-
quired. In micro-averaging all TPci , TNci , FPci and FNci

for each class ci,∀ci ∈ C are averaged,

PRmicro =

∑
ci∈C TPci∑

ci∈C (TPci + FPci)
(4)

RECmicro =

∑
ci∈C TPci∑

ci∈C (TPci + FNci)
(5)

Multi-label accuracy. In multi-label classification, a mis-
classification is no longer a hard wrong or right. A pre-
diction containing a subset of the actual classes should be
considered better than a prediction that contains none of
them, i.e., predicting two of the three labels correctly is
better than predicting no labels at all. Hamming-Loss is the
fraction of labels that are incorrectly predicted. Given an i
-image input to the model, and assuming an output vector
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Figure 3. Hamming loss metric for the ForestViT model and benchmark techniques for 12 different multi-label combinations.

with binary elements ŷi,j , dimensions [1 × N ] and the
corresponding ground truth with element yi,j , the hamming
loss metric is:

HM =
1

|N |·|M |

N∑
i=1

M∑
j=1

1yi,j 6=ŷi,j (6)

B. Deforestation risk analysis enabled by
multi-label classification.

We hereby present a deforestation risk analysis as enabled
by the described multi-label classification problem. Fig.
3 illustrates the ForestViT model performance in detect-
ing land-use properties acting as drivers for deforestation
among with the existence of forest areas (class ”primary’) in
the same figure (multi-label classification). Hamming loss
metric shows that our proposed ForestViT model has better
performance compared to ResNET, VGG16, DenseNET and
MobileNET method.

As mentioned above, in multi-label classification, a misclas-
sification is no longer a hard wrong or right, given that a
prediction containing a subset of the actual classes should
be considered better than a prediction that contains none
of them. However, in our application the existence of the
’primary’ class in an image among with an additional label
related with land use that possibly could act as a driving
factor of deforestation, could indicate possible areas with
high risk of deforestation. Thus, the consecutive existence
of both classes assigned corrected, is of great importance
for our application scenario.

In our last scenario, we consider seven different cases that
contain images having at least two different labels. The
primary forest label is included as the standard label for
all the cases and the second label varies and is one of the
selected drivers (agriculture, cultivation, mining, road in-
frastructure, habitation, logging and bare ground) for each
case. In this case, we compare the probability to detect the
primary forest label in those images with the probability
of jointly detecting both the primary forest and the driver
respective label.

Pprim =
nprim

Nprim,x
, Pprim,x =

nprim,x

Nprim,x
(7)

where, x stands for the drivers [agr:agriculture,
cul:cultivation, min:mining, roa:road, hab:habitation,
log:logging, bar:bare ground], Nprim,x is the total number
of images that include at least the primary forest label and
the driver −x label, nprim is the subset from the Nprim,x

set of mages that correctly identified as primary forest,
nprim,x is the subset from the Nprim,x set of mages that
correctly identified both as primary forest and x− label.

Fig. 4, demonstrates the probability of successfully detect-
ing primary versus the probability of detecting both primary
and a driver related class. In particular, we compare Pprim

and Pprim,x values per architecture. As observed, the pri-
mary forest class is accurately detected for all the examined
cases and deep learning architectures (see also Fig. 2). The
cases that include the agriculture and road labels, are identi-
fied with high accuracy. Cultivation, habitation and mining
labels follow in accuracy performance, whereas logging and
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bare ground labels appear the worst performance. Here,
we highlight that logging and bare ground classes are rare
occurrences (minority class) in dataset, and this explains
their low performance.


