
Estimation of Corporate Greenhouse Gas Emissions via Machine Learning

You Han 1 Achintya Gopal 1 Liwen Ouyang 1 Aaron Key 2 *

Abstract
As an important step to fulfill the Paris Agreement
and achieve net-zero emissions by 2050, the Eu-
ropean Commission adopted the most ambitious
package of climate impact measures in April 2021
to improve the flow of capital towards sustainable
activities. For these and other international mea-
sures to be successful, reliable data is key. The
ability to see the carbon footprint of companies
around the world will be critical for investors to
comply with the measures. However, with only
a small portion of companies volunteering to dis-
close their greenhouse gas (GHG) emissions, it
is nearly impossible for investors to align their
investment strategies with the measures. By train-
ing a machine learning model on disclosed GHG
emissions, we are able to estimate the emissions
of other companies globally who do not disclose
their emissions. In this paper, we show that our
model provides accurate estimates of corporate
GHG emissions to investors such that they are
able to align their investments with the regulatory
measures and achieve net-zero goals.

1. Introduction
There is clear, scientific evidence to show the devastating
impact that increased greenhouse gas (GHG) emissions is
having across the world (NASA; Strona & Bradshaw, 2018).
Governments and private society now recognize the urgency
with which they need to act to mitigate the risks that climate
change poses. Private companies have joined international
governments in their pledge to hit net zero by 2050 (Indus-
try). In order to make a meaningful change, we need to
measure who is contributing GHG into the atmosphere and
monitor their claims to decarbonize.

In April 2021, the European Commission adopted the most
ambitious and comprehensive package of measures to im-
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prove the investment towards sustainable finance (EU, b).
For these and other international measures to be successful,
it is crucial that global investors are aware of the GHG emis-
sions of companies operating around the world. However,
since GHG emissions are currently disclosed on a voluntary
basis (Fisher-Vanden & Thorburn, 2011), merely 2.27% of
companies filing financial statements are disclosing their
GHG emissions according to our Environmental, Social
and Governance (ESG) datasets. Moreover, the European
Parliament requires investors to apply “the precautionary
principle” that penalizes non-disclosing companies by ap-
propriately overestimating their emissions (EU, a).

There are four major challenges to estimate GHG emissions:

• Significantly imbalanced labeled and unlabeled
datasets. Here, labeled dataset means the GHG emis-
sions disclosed by companies. Specifically, our labeled
dataset contains only 24,052 annual GHG emissions
disclosed by 3,960 companies from fiscal years 2000
to 2020, while our unlabeled dataset (target prediction
universe) contains 619,703 records of 61,467 compa-
nies in the same fiscal range as the labeled dataset.

• High feature missing rates. Although our dataset in-
cludes more than 1,000 features on public and pri-
vate companies, 525 of the features have missing rates
greater than 90%.

• Mismatched feature missing patterns between the la-
beled and unlabeled datasets. It is observed that com-
panies who disclose their GHG emissions tend to dis-
close other ESG features as well. For example, energy
consumption is disclosed by 97% companies in the
labeled dataset while by only 20% companies in the
unlabeled dataset.

• Uncertainty of estimation. According to the precau-
tionary principle, the uncertainty around an estimate
must be quantified, which means models outputting
a single point estimate of the GHG emission do not
suffice.

The problem of estimating corporate GHG emissions has
been studied in a few prior works, and their methodologies
can be classified into two categories: conventional statisti-
cal approaches and modern machine learning approaches.
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Conventional statistical approaches either assign the mean
or median of disclosed GHG emissions of an industry sector
to the non-disclosing companies (Nguyen et al., 2021), or
build a simple linear regression model for each industry
sector using only a few universally available features such
as annual revenue of a company (Goldhammer et al., 2017;
CDP, 2020; Nguyen et al., 2021). Such models highly rely
on various assumptions that may not hold in reality such as
the features are always available, all companies in the same
industry sector have the same emission level, and linear re-
lationship between the features and the GHG emissions. As
an example, the Carbon Disclosure Project (CDP) applies
a Gamma Generalized Linear Model (GLM) trained with
2,000 observations to estimate the GHG emissions of 5,000
non-disclosing companies (CDP, 2020), in which only rev-
enues of a company from various CDP defined activities are
used. Here, the GHG emissions of a company is assumed to
follow a Gamma distribution without empirical justification.

Similar to our work, two recent works apply modern ma-
chine learning approaches to model corporate GHG emis-
sions. A Radial Basis Function network is employed in
Javadi et al. (2021) to estimate the GHG emissions of com-
panies in the automotive industry using five industry specific
features. In Nguyen et al. (2021), 13,435 observations from
2,289 global companies are used to train six base models:
ordinary least square regression, elastic network, neural
network, K-nearest neighbour, random forest, and extreme
gradient boosting. Then the estimates of the six base models
are ensembled to generate the final estimate. The main lim-
itation of this work is that only a single value is estimated
rather than a distribution making the precautionary principle
difficult to apply.

In this paper, we propose a framework of modern machine
learning approaches to estimate corporate GHG emissions,
which tackles all four of the aforementioned challenges.
More specifically, we are able to handle missing features
since decision trees are used in our model. In addition,
we develop a technique called patterned dropout to solve
the missing pattern mismatch issue between the labeled and
unlabeled data. To account for the uncertainty quantification,
we output the distribution of a company’s GHG emissions
in each fiscal year as our estimate, the mean of which can be
used as the most accurate estimate while large quantiles can
be used to fulfill the precautionary principle requirement.
Lastly, different from prior works, our model is more data
driven with fewer parametric assumptions made.

2. Datasets
More than 1,000 features are used in our model that come
from multiple datasets including ESG, industry classifica-
tion, revenue segmentation by industry sectors, company
financials (fundamentals), and corporate locations.

The ESG dataset offers over 500 metrics: 297 for Environ-
mental, 73 for Social, and 153 for Governance. The envi-
ronmental metrics include carbon emissions and resource
and energy use; social metrics include human rights and
diversity and inclusion; governance metrics include criteria
based on management structure, executive compensation,
and employee relations.

The industry classification dataset contains a hierarchical
classification of industries where all industry sectors are bro-
ken down into at least four levels, with some going as deep
as eight levels. The revenue segmentation dataset shows the
percentage of a company’s revenue from each industry sec-
tor. The fundamentals data includes information from three
key accounting statements: balance sheet, income statement,
and statement of cash flows.

3. Methodology
Similar to CDP (2020), we model the Scope 1 and Scope
2 of corporate GHG emissions separately as we found em-
pirically they are conditionally independent given the data.
Scope 1 emissions are direct GHG emissions that occur from
sources that are controlled or owned by an organization (e.g.,
emissions associated with fuel combustion in boilers, fur-
naces, vehicles) while Scope 2 emissions are indirect GHG
emissions associated with the purchase of electricity, steam,
heat, or cooling (CDP, 2020). Our machine learning model
uses Gradient Boosting Decision Trees for Amortized Infer-
ence, Recalibration using Normalizing Flows, and Patterned
Dropout for regularization. More specifically, we employ a
two-phase model: first, a decision tree is used to map from
features to Gamma distributions, and then a normalizing
flow is used to transform the Gamma distributions to a more
flexible class of distributions.

3.1. Amortized Inference with Gradient Boosting Trees

Amortized inference (or conditional probability modeling)
(Gershman & Goodman, 2014) is used to learn a function
that maps the features in a row of data to the parameters of
a distribution. In this way, the function can learn a different
estimate of GHG emissions per company per fiscal year.
There are many choices for the function we can learn such
as linear models, decision trees and neural networks. The
choice among these depends on the requirements we have
for the model, namely: non-linearity in the marginals and
correlations, stability, interpretability, and missing values
and categorical features handling. To address these needs,
we decided to use gradient boosting decision trees (GB-
DTs, (Friedman, 2001)) as they are not only able to capture
complex non-linear relationships, but also more stable and
explainable than neural networks (Lundberg & Lee, 2017;
Kumar et al., 2020). More importantly, LightGBM (Ke
et al., 2017) is used in our model as it is able to handle
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missing values and categorical features more naturally.

As we use more than 1,000 features and only have 24,052
rows of disclosed emissions, if we were to train our GBDT
to convergence, the model would overfit to the labeled
dataset. To prevent overfitting, we regularize via depth
and minimum number of samples per leaf and use early
stopping based on the log likelihood on a validation set.

3.2. Recalibration with Normalizing Flows

Although we fit a Gamma distribution to GHG emissions,
we know that real GHG emissions do not truly follow a
Gamma distribution. To make the distribution more realis-
tic, after training the GBDT on the training set, we recal-
ibrate our distributions on the validation set. A common
recalibration approach in the literature is isotonic regression
(Kuleshov et al., 2018). However, this approach does not
naturally fit the statistical framework we are using and is un-
able to predict many statistics such as the mean. We instead
use a likelihood formulation of recalibration (Gopal & Key,
2021):

1. fθ = argmaxfθ
∑Ntr
i=1 log pfθ (y

tr
i |xtri )

2. gφ = argmaxgφ
∑Nval
i=1 log pgφ(Fθ(y

val
i |xvali ))

where fθ(y|x) is the predicted Probability Density Function
(PDF) function given x, Fθ(y|x) is the Cumulative Density
Function (CDF) of fθ(y|x), {xtr, ytr}Ntri=1 is the training set
and {xval, yval}Nvali=1 is the validation set. More specifically,
fθ is parameterized by a GBDT, and we parameterize gφ
with QuAR Flows, a flexible normalizing flow that can
learn complicated shapes such as multimodality (Gopal,
2020). More details about normalizing flows can be found
in Appendix A. Given this likelihood approach, the final
recalibrated result is still a valid distribution on which we
can compute any statistic of the distribution. Calibration
results before and after recalibration are in Appendix D.

3.3. Patterned Dropout

As discussed in Section 1, the feature missing patterns are
quite different between labeled and unlabeled data such
that a model trained solely on the labeled data does not
necessarily perform equally well on the unlabeled data. In
other words, the data distributions are different between the
two datasets. To solve this problem, we augment the training
data with a masked dataset that is created by applying the
feature missing patterns of the unlabeled data to the original
labeled data. We call this technique “Patterned Dropout” as
the masked data is generated in such a way that features
that go missing together in the unlabeled set will be masked
together from the labeled data.

Maximum Mean Discrepancy (MMD) (Gretton et al., 2012)

is used in our work to generate the masked data. More
specifically, MMD is a non-parametric measure to compute
the distance between the two sets of samples. Let IL and
IU be the missing indicators of the labeled data XL and
unlabeled data XU , respectively. We build a masker model
using neural networks that learns a missing indicator ÎL
conditional on XL, applies it to XL to generate masked
data X̂L, such that the MMD loss is minimized between the
joint distributions P (X̂L, ÎL) and P (XU , IU ). More details
about our MMD technique can be found in Appendix B.

4. Evaluation
Since the modeling technique is the same for both Scope
1 and 2, and the performance is similar, we focus our anal-
ysis on Scope 1 GHG emissions due to limited space. We
perform ten-fold cross-validation. Similar to Nguyen et al.
(2021), since our goal is to generalize to non-disclosing
companies, we split our data by companies such that all
observations of a company must be in only one of the sets:
training, validation (for early stopping), and test. Moreover,
we evaluate the performance of our model on both the origi-
nal labeled (“Unmasked”) data and “Masked” data. Since
the masked data is created by applying the feature missing
patterns of the unlabeled data to the labeled data, it can be
used to more accurately measure the model’s performance
on non-disclosing companies. Therefore, performance on
the masked data is more important.

We benchmark our model against two baseline models. As
often used in conventional statistical approaches (Nguyen
et al., 2021), a simple baseline model (referenced as “Sim-
ple”) is the mean of disclosed emissions at each industry
sector starting from industry classification level 4, where if a
sector has insufficient data (less than 50 data points), we fall
back one level up. Moreover, to keep the model statistical,
we also compute the variance and fit a sector level Gamma
distribution by matching the moments. Same as the model
in CDP (2020), our second baseline model (referenced as
“Baseline”) is a Gamma GLM model fit for each industry
sector. More details about the second baseline model can be
found in Appendix C. Note that our model is also referenced
as “Recalib” in the following analysis as the recalibrated
distributions are our final outputs.

4.1. Performance of Identifying Heavy Emitters

As a practical use case, we compare the three models in a
binary classification task: decide if a company is a high-
intensity emitter. Carbon intensity (GHG emissions divided
by revenue) has been widely used to measure a company’s
GHG performance (Hoffmann & Busch, 2008). For each
level 1 industry sector (namely Industrials, Health Care,
Technology, Financials, Materials, Real Estate, Utilities,
Energy, Consumer Staples, Consumer Discretionary, Com-
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Simple Baseline Recalib

Unmasked Data 0.1620 0.3705 0.2730
Masked Data 0.1620 0.1830 0.2648

Table 1. Precision Comparison

Simple Baseline Recalib

Unmasked Data 8854.89 9184.00 6657.00
Masked Data 8854.89 9690.46 6744.02

Table 2. RMSE Comparison

munications), we use the 90th percentile of the carbon in-
tensity in the labeled data as the threshold, and a company’s
intensity is in Class 1 (high-intensity) if it is greater than
the threshold and Class 0 (low-intensity) otherwise. To ap-
ply the precautionary principle, the 99th percentiles of the
distributions are used to calculate the carbon intensity.

Table 1 compares the Class 1 precision of the models, and
shows that the “Baseline” model has the best performance
on the unmasked data while our model is superior on the
masked data. As explained at the beginning of this section,
performance on the masked data is more important as it is
more representative of performance on the non-disclosing
companies. We expect the “Baseline” model to perform
well on the unmasked data as it leverages full access to all
of the features and tends to overfit to the unmasked data.

4.2. Performance of Distribution Means

As mentioned in Section 3, the means of our output distribu-
tions can be used as the most accurate estimates of the GHG
emissions, and they are used to evaluate the accuracy of
the three models. Table 2 compares the root mean squared
error (RMSE) between the baseline models and our model
where our model consistently has the lowest RMSE. We also
compare model performance with respect to absolute error
and percentage error. As shown in Figure 1, the “Baseline”
model has lower absolute and percentage error on the un-

0 2000 4000 6000 8000 10000

Absolute Error

50

60

70

80

90

100

C
u
m

u
la

ti
v
e

P
er

ce
n
ta

g
e

0 20 40 60 80 100

Percentage Error

0

20

40

60

80

100

C
u
m

u
la

ti
v
e

P
er

ce
n
ta

g
e

Our Model - Unmasked Data

Our Model - Masked Data

Baseline - Unmasked Data

Baseline - Masked Data

Simple Baseline

Figure 1. Absolute and Percentage Error Comparison

0.0 0.2 0.4 0.6 0.8 1.0

Predicted Cumulative Level

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l

C
u

m
u

la
ti

v
e

D
is

tr
ib

u
ti

o
n Optimal

Recalib. Unmasked: 0.04

Recalib. Masked: 0.05

Baseline Unmasked: 0.19

Baseline Masked: 4.16

Simple Baseline: 0.34

Figure 2. CDF Q-Q Plot (Kuleshov et al., 2018)

masked data, but our model performs better on the masked
data and shows less performance degradation between the
unmasked and masked data.

4.3. Calibration Performance

Though a regression model is often reduced to a mean pre-
diction, an important consideration of our model is how
well-calibrated the model is. Figure 2 compares calibration
performance of the three models, in which the calibration
errors shown in the legend box are defined as

∑
j(pj − p̂j)2

where pj and p̂j denote empirical and predicted CDFs re-
spectively (Kuleshov et al., 2018).

We can see that the “Baseline” model is worse than our
model, and the “Simple” model is better than the “Baseline”
but worse than our model. In the baseline models, the top
10% and the bottom 10% of observations are not captured
by the distributions, or in other words, the variance is un-
derestimated. Moreover, our model is still well-calibrated
even on masked data. The “Baseline” model’s distribution
is unable to capture the top 40% and bottom 20% of masked
observations. More results are in Appendix D.

5. Conclusion
To assist investors aligning their investment strategies with
EU and other international measures on Paris Agreement
benchmarks, we created a machine learning model that
generates distributional estimates of Scope 1 and 2 GHG
emissions for non-disclosing companies. By applying the
precautionary principle against those companies, regulators
and investors can significantly promote sustainable finance.
For future works, we plan to add more relevant features
from multiple datasets such as corporate actions, supply
chain and factory data.
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A. Normalizing Flows
Learning a probability distribution from data is a core prob-
lem within machine learning. Fitting distributions can be
simple for some low-dimensional datasets, but fitting distri-
butions to high-dimensional data with complex correlations
requires a more systematic solution. One deep learning
approach to designing large, complex distributions that cap-
ture the essential relationships among the data points is to
train Normalizing Flows. Normalizing Flows are a family
of deep generative models for designing large, complex dis-
tributions that capture the essential relationships among the
data points.

Suppose that we wish to formulate a joint distribution on
an n-dimensional real vector x. A flow-based approach
treats x as the result of a transformation g applied to an
underlying vector z sampled from a base distribution pz(z).
The generative process for flows is defined as:

z ∼ pz(z) (1)
x = g(z) (2)

where pz is often a Normal distribution and g is an invertible
function. Notationally, we will use f = g−1. Using change
of variables, the log likelihood of x is

log px(x) = log pz (f(x)) + log|det
(
∂f(x)

∂x

)
| (3)

To train flows (i.e., maximize the log likelihood of data
points), we need to be able to compute the logarithm of the
absolute value of the determinant of the Jacobian of f , also
called the log-determinant. |∂f(x)∂x | quantifies how much the
function f expands or contracts locally.

Due to the required mathematical property of invertibility,
multiple transformations can be composed, and the composi-
tion is guaranteed to be invertible. Since the transformations
are often implemented as neural networks, the steps in the
composition are easy to chain together. Thus, in theory, a
potentially complex transformation can be built up from
a series a smaller, simpler transformations with tractable
log-determinants.

Constructing a Normalizing Flow model in this way pro-
vides two obvious applications: drawing samples using the
generative process and evaluating the probability density of
the modeled distribution by computing px(x). These require
evaluating the inverse transformation f , the log-determinant,
and the density pz(z). In practice, if inverting either g or
f turns out to be inefficient, then one or the other of these
two applications can become intractable. For the second
application in particular, computing the log-determinant can
be an additional trouble spot.

B. Maximum Mean Discrepancy
Machine learning models often work on the assumption that
the training and test sets follow the same distribution. In
practice, this might not be the case, yet the difference in dis-
tribution, called dataset shift, is often ignored. Though this
might be acceptable when the dataset shift is small, it can
lead to poor performance in other cases. Dataset shift can
be divided into three main categories: covariate shift, prior
probability shift, and concept shift. Covariate shift occurs
when the distribution of input features changes, prior proba-
bility shift occurs when the distribution of target variables
changes, and concept shift occurs when the relationship
between input features and target variables changes.

Assume we have two sets of samplesX = {xi}Ni=1 and Y =
{yj}Mj=1 drawn from two distributions P (X) and P (Y ).
MMD is a non-parametric measure to compute the distance
between the two sets of samples in mean embedding space.
Let k be a measurable and bounded kernel of a reproducing
kernel Hilbert space (RKHS) Hk of functions, then the
empirical estimation of MMD between the two distributions
inHk can be written as

LMMD2(X,Y ) =
1

N2

N∑
i=1

N∑
i′=1

k(xi, xi′)

+
1

M2

M∑
j=1

M∑
j′=1

k(yj , yj′)

− 1

NM

N∑
i=1

M∑
j=1

k(xi, yj) (4)

When the underlying kernel is characteristic, MMD is zero
if and only if P (X) = P (Y ) (Gretton et al., 2012). For
example, the popular Gaussian RBF kernel, k(x, x′) =
exp(− 1

2σ2 |x − x′|2), is a characteristic kernel and was
widely used.

In our MMD masker model, let Itr and Ite be the missing-
ness indicators for the training (i.e., labeled dataset) and test
(i.e., unlabeled dataset) features Xtr and Xte, respectively;
we want to learn a missingness indicator Îtr conditioned on
Xtr and Itr that can minimize the MMD loss between the
joint distributions P (X̂tr, Îtr) and P (Xte, Ite):

L = LMMD2((X̂tr, Îtr), (Xte, Ite)) (5)

where X̂tr is generated by masking original Xtr using
learned Îtr. The downstream model is then trained using
X̂tr instead of Xtr. In this way, the downstream model can
focus on the right features for each training sample.
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Figure 3. Comparison of the predicted mixture distribution for before and after recalibration versus observations. The lower panel shows
the distance between the predicted density and the observed density, normalized by the standard error of the counts in the bin.

C. Baseline Models
Our second baseline model is a linear model trained on buck-
eted data. The linear model we use is a Gamma Generalized
Linear Model (GLM) since the distribution our GBDT fits
is a Gamma distribution. We bucket the data by sectors
from industry classification hierarchy, using levels from 4
to 1 (highest level). Similar to the first baseline model, if
an industry has insufficient data (less than 50 data points),
we fall back one level up in the industry classification hier-
archy. Since we have over 1,000 features, we use a greedy
approach for feature selection where we add the feature
that improves the log likelihood the most. We continue the
greedy selection up until the Bayesian Information Criterion
increases. To add some non-linearity to our baseline model,
for every positive feature, we create a new feature that is the
natural log of the original feature.

D. Calibration Performance
Figure 3 compares the predicted and observed mixture dis-
tribution. Whereas the mixture before recalibration is rather
smooth, the mixture from the recalibrated distribution is
both qualitatively and quantitatively a better fit. The quan-
titative information is shown in the lower panel, where the
pulls (the distance between the predicted density and the
observed density, normalized by the standard error of the
counts in the bin) are closer to 0, and the χ2/ndf =

∑
i pull2i
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Figure 4. CDF Q-Q Plot

is closer to one (the ideal value of the χ2/ndf). In summary,
the calibration performance of our model is significantly
improved through recalibration.

In addition, the calibration errors are compared in Figure
4 before (referenced as “Calib.”) and after recalibration on
both the unmasked and masked data. We can see that the
recalibration step decreases the calibration errors, especially
on the top and bottom 10% of observations.


