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Abstract
Streamflow forecasting is key to effectively man-
aging water resources and preparing for the occur-
rence of natural calamities being exacerbated by
climate change. Here we use the concept of fast
and slow flow components to create a new mass-
conserving Long Short-Term Memory (LSTM)
neural network model. It uses hydrometeorologi-
cal time series and catchment attributes to predict
daily river discharges. Preliminary results evi-
dence improvement in skills for different scores
compared to the recent literature.

1. Introduction
Streamflow forecasting is essential in the planning and oper-
ation of water resources, such as supplying cities, electricity
production, irrigation, and navigation. It also helps to pre-
pare for natural disasters, such as floods and droughts. Hav-
ing accurate methods to predict river discharge in advance
would help to manage uncertainties that affect society and
the economy, a challenge under climate change.

In this paper, we consider the problem of predicting next
day streamflow given time series of past meteorological data
(precipitation, soil moisture, and temperature) and physio-
graphic attributes, such as land cover type, soil, topography,
etc, of the catchment. We assume to have access to river dis-
charge measurements for a certain period to train/calibrate
the streamflow model. Once trained, the model should run
on meteorological and physiographic data only, i.e, without
access to new streamflow data to update the model. This
simulates a scenario where a river gauge station ceased
to operate, which is consistent with the globally observed
decline in station coverage (Gudmundsson et al., 2018).

Traditionally, streamflow forecasting is done using either
empirical or conceptual models. The first seeks to establish
mathematical relationships between streamflow and predic-
tive variables, and are easier to conceive. Conceptual models
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Paredes Quiñones <mparedes@br.ibm.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

seek to represent the knowledge of physical hydrological
processes, and perhaps are easier to interpret.

We follow the approach of empirical modeling, focusing
on machine learning. Past solutions vary from simple auto-
regressive models, such as multilinear regression (MLR)
(Tangborn & Rasmussen, 1976), auto-regressive moving av-
erage (ARMA) (Box et al., 2015) and variations that attempt
to model physical relations by using exogenous variables
(ARMAX) (Haltiner & Salas, 2007). While simpler models
offer a very good solution for streamflow forecasting, often
they require pre-processing steps before model application,
such as time series seasonal decomposition.

Black-box approaches of the kind of artificial neural net-
works (ANN) (Govindaraju, 2000), offers a straightforward
alternative to model nonlinear hydrological relations. ANNs
have been shown to outperform ARMA and MLR mod-
els (Cigizoglu, 2005). Under proper training, the prediction
skill of many streamflow prediction approaches based on
ANN improves as the flexibility (complexity) of the model
increases, but at an increased computational cost to train.

Recently, Long Short-Term Memory (LSTM), a type of arti-
ficial recurrent neural network architecture that can store and
forget information over time has shown promising results in
streamflow modeling (Kratzert et al., 2019).

Mass conservation is an important property exploited to
customize LSTM formulations to ensure certain inputs are
conserved and redistributed across storage locations in a
system (Hoedt et al., 2021). In Hoedt’s et al. application
in hydrology, the amount of water is conserved using an
LSTM variant with new neural arithmetic units that preserve
a constant sum of memory cells over time.The LSTM archi-
tecture use two types of inputs: one related to mass, such
as contributions to the streamflow, and auxiliary inputs, that
variables control how the streamflow and these new con-
tributions generate the next value of streamflow in a time
series, acting as inputs to the gates that control mass fluxes.

In this paper we have three main objectives:

1. Propose a new LSTM architecture to estimate stream-
flow that implicitly modulate fast and slow flows com-
ponents, respecting mass conservation.

2. Improve the efficiency of streamflow modeling by us-
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ing a projection layer in our LSTM architecture, thus
encoding catchment attributes in a smaller data space.

3. Test the skill of our LSTM architecture to predict
streamflow in 32 stream gauges located in southern
Brazil, comparing results to state-of-the-art models.

2. Related work
2.1. Mass-Conserving LSTM

Hoedt et al. (2021) modified an LSTM to represent in a re-
current cell the dynamics of the water balance, by receiving
water contributions xt (1),

mt
tot = Rt · ct−1 + it · xt (1)

ct = (1− ot)�mt
tot (2)

ht = ot �mt
tot (3)

qt =

n−1∑
i=1

hti (4)

where:

it = softmax (Wi · at +Ui · c̃t + bi) , (5)

ot = σ (Wo · at +Uo · c̃t + bo) , (6)

Rt = softmax (Wr · at +Ur · c̃t +Br) , (7)

and c̃t is a normalization of ct (ct−1/‖ct−1‖). W and U are
weight matrices, b and Br are a bias vector that need to be
learned during training. The Rt matrix regulates how much
past water in the system is considered in the current water
balance. This matrix depends on the remaining water of the
system ct−1 and the forcing variables at. Vector it controls
the way that the auxiliary variables and the past water in the
system influences the addition of new water. Finally, vector
ot redistributes water in the system to the next streamflow
water accumulators. (Hoedt et al., 2021) found that this
mass conserving LSTM works very well for extreme values
of streamflow.

2.2. Fast and slow components of streamflow

Koster et al. (2018) proposed a simple model to predict
10-day streamflow totals in medium-sized watersheds using
only average precipitation and soil moisture of the basins.
Their model was proposed to estimate streamflow using
only data from the Soil Moisture Active Passive (SMAP)
satellite mission. According to the authors, streamflow can
be approximated by fast and slow flow components. The
fast flow (Qfast) portion of precipitation p is proportional
to the soil moisture w of the top surface layers of the soil
(i.e, Qfast ∝ w ·p), and the slow flow is Qslow ∝ w. These
relations can be combined to represent the dynamics of
streamflow Q as a quadratic function of p and w:

Q = Qfast +Qslow = α · w · p+ β · w + γ (8)
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Figure 1. Deep neural network L(w, p) that will model the mass
input in our FS-LSTM architecture.

This simple model reasonably approximated streamflows in
warm seasons. However, large biases were observed during
periods of high rainfall (Koster et al., 2018).

3. Fast-Slow Mass-Conserving LSTM
Streamflow Model

The motivation to create our new LSTM model to forecast
streamflow comes from the idea that precipitation (p) and
soil moisture (w) contribute directly to the formation of
new streamflow (Koster et al., 2018). Because of that, the
name of the proposed architecture is FS-LSTM (Fast-Slow
LSTM). We also take note of the mass-conserving LSTM
model reviewed in Section 2.1, and we build on these prior
works.

Equation (9) models implicitly the fast and slow flow contri-
butions, that depend on precipitation (pt) and soil moisture
(wt) at day t:

mt
tot = Rt · ct−1 + it · L(wt, pt). (9)

This means that instead of relying on the simple streamflow
model considered in (8), we account for possible nonlin-
earities in streamflow using a multilayer perceptron neural
network L(wt, pt), that takes as inputs precipitation and soil
moisture and output the unknown fast and slow flow com-
ponents. Assuming that the relation between precipitation
and soil moisture (modulating between fast and slow flow
components) is close to the quadratic function proposed
by (Koster et al., 2018) shown in (8), we decided to use
a relatively smaller number of layers and neurons in the
network L(wt, pt) shown in Figure 1. To ensure positive
values of L(wt, pt) we use a quadratic function at the output
layer. Also, using (2) and (3) to determine ct and qt, we
have that:

rt = Wr · at (10)

it = softmax
(
Wi · rt +Ui · ĉt + bi

)
(11)

ot = σ
(
Wo · rt +Uo · ĉt + bo

)
(12)

Rt = softmax
(
Wr · rt +Ur · ĉt +Br

)
(13)

Differently from the MC-LSTM model, we propose to use
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Figure 2. Fast slow streamflow LSTM architecture.

the sum of the past mass of the system ĉt =
∑N
i ci,t. We

found that this sum has a similar effect on the activation
gates to c̃t of the MC-LSTM, and ĉt has dimension one,
thus reducing the number of weights. Furthermore, we use
a projection layer rt on the auxiliary inputs to reduce the di-
mensionality of the other activation layers. This projection
acts like an encoder layer that compresses similar patterns
into a smaller space compared to at. This approach is sim-
ilar to the approach used in (Sak et al., 2014) to create a
recurrent layer in the LSTM architecture that increases the
number of units of the projection layers without increasing
the number of parameters in all LSTM activations.

The MC-LSTM architecture has 2 · nc · (na + nc) + n2c ·
(na + nc) weights (without counting the biases), and our
FS-LSTM has 2 · nc · (nr + nc) + n2c · (nr + nc) + nr · na,
where nc is the number of cells; na is number of auxiliary
inputs, and nr is the number of elements on the projected
space. Our method can be trained using, for instance, fewer
weights if we choose nr as:

nr ≤ na ·
(n2c + 2 · nc)

(n2c + 2 · nc) + na
(14)

4. Experiments
4.1. CAMELS-BR dataset and study area

The data used in our research come from the freely available
CAMELS-BR1 dataset. We screen for the stream gauges
located into coordinates the (54W, 19.5S) and (43.5W, 27S)
of our study area shown in Figure 3. We selected gauges
having at least 10 years of quality-controlled daily time
series of unregulated streamflow, meteorological data, and
catchment attributes.

We also included in the analysis soil moisture from gridded
GLDAS (Rodell et al., 2004) version 2.0. This product

1Catchment Attributes and Meteorology for Large-sample Stud-
ies - Brazil (Chagas et al., 2020b).
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Figure 3. Selected stream gauge stations with their correspondent
basins areas in southern Brazil.
provides the surface soil moisture daily average in kg/m2

for the top 10-cm soil layer. We compute daily average
soil moisture values using the polygon data available in the
shapefiles (available in (Chagas et al., 2020a)) that delineate
the catchment of each stream gauge station.

As L(·) input variable, we use the average of precipitation
in the catchment, in mm/day, derived from CHIRPS (Funk
et al., 2015), that is distributed with CAMELS-BR. The aux-
iliary dynamic input variables were the minimum, mean, and
maximum temperatures from NOAA (Climate Prediction
Center, 2019). The static variables, used to characterize the
catchment, are: elevation mean, slope mean, area, forest per-
centage, bedrock depth, water table depth, sand percentage,
silt percentage, clay percentage, geological permeability,
pressure mean, potential evapotranspiration mean, aridity,
high precipitation frequency, high precipitation duration,
low precipitation frequency and low precipitation duration.

4.2. Evaluation criteria

We use six scores that attempt to capture different skills
sought in streamflow predictions. The Nash–Sutcliffe model
efficiency coefficient (NSE) (Nash & Sutcliffe, 1970) that
helps to understand how the model improves over the mean.
The Kling-Gupta Efficiency (KGE) (Gupta et al., 2009)
which is a weighted sum of the three components that appear
in the NSE formula: linear correlation, variability ratio, and
bias ratio. The root mean squared error (RMSE). We also
use three scores derived from the flow duration curve (FDC),
a cumulative frequency curve that shows the percent of
time specified discharges were equaled or exceeded during
a given period (see examples in Figure 5). The bias of
the high-segment volume (%BiasFHV) with exceedance
probabilities 0.0-0.2, the mid-segment slope (%BiasFMS)
in 0.2-0.7, and the low-segment volume (%BiasFLV) in
0.7-1.0 (Yilmaz et al., 2008).



Fast-Slow Streamflow Model Using Mass-Conserving LSTM

Table 1. Common setup for LSTM architectures.

# CELLS # EPOCHS BATCH INPUT OUTPUT

64 30 256 365 1

4.3. Experimental set-up

All stations shared in common daily time series from 1
October 1994 to 30 September 2008. We trained on stream-
flow observations from 1 October 1999 to 30 September
2008 and tested on observations from 1 October 1994 to
30 September 1999. The remaining initial observations (1
October 1990 to 30 September 1994) were set aside for
validation during the training to avoid over-fitting problem.

We compared our FS-LSTM model to three alternative
methods: a vanilla LSTM (Kratzert et al., 2018); EA-
LSTM (Kratzert et al., 2019), in both cases the meteorologi-
cal forcing data and additional catchment attributes controls
the state space that are used; and MC-LSTM (Hoedt et al.,
2021) considered state-of-the-art. The common setup con-
figuration for all the lstm architectures is shown in Table 1.
In this table, the input size includes the number of previous
time steps of mass, and auxiliary catchment variables that
are needed to forecast the streamflow output. For the ANN
architecture shown in Figure 1, we used 2 layers and 10 neu-
rons per layer. Also for we used nr = 10 that respect (14).
In our experiments with MC-LSTM, we set soil moisture as
an input mass variable, not originally considered in (Hoedt
et al., 2021). Each model trains with all gauges pooled
together in 30 epochs.

4.4. Results

The charts in Figure 4 illustrate the kernel density estimates
for the six scores evaluated in the 32 basins during the
testing period. The proposed FS-LSTM outperforms the al-
ternative algorithms tested in terms of NSE, with an average
of 0.7 compared to 0.68 of EA-LSTM, ranked second, and
0.66 of the vanilla LSTM, with relatively higher standard
deviations. A relative improvement (RI) of 2.9%. FS-LSTM
achieved the lowest average RMSE error of 1.43 mm/day,
compared to 1.51 mm/day (5.3% RI) of EA-LSTM, all
having similar density curves. In terms of KGE, the ad-
vantage of FS-LSTM also becomes clear, with a density
curve shifted towards higher values, with an average of 0.79
compared to the 0.77 (2.6% RI) of the vanilla LSTM.

Results are more mixed for the scores based on the FDC.
MC-LSTM outperforms the other methods in terms of aver-
age %BiasFHV, but we note that all models perform well
since most of their densities values have bias within the
±25% range recommend by (Moriasi et al., 2007). With
%BiasFMS, arguably the proposed FS-LSTM has the sec-
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Figure 4. Metrics comparing different streamflow models in 32
CAMELS-BR stream gauges.
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Figure 5. Flow Duration Curve for basins with the worst (left) and
best (right) NSE.

ond overall performance because the kernel density curve
looks more symmetrical around zero and only a small por-
tion of the tales are outside the target±25% bias bound. For
the %BiasFLV, our experiments suggest that FS-LSTM and
EA-LSTM perform very well compared to MC-LSTM and
LSTM, attaining the desired ±25% bound.

Figure 5 presents two examples of FDC for the gauges with
the worst and best NSE skill over all models, from left to
right, respectively. These curves show the percentage of
time a certain river discharge was equaled or exceeded dur-
ing the testing period. Even in the worst case, FS-LSTM
provided competitive results in the flow exceedance proba-
bility range ≈ 0.2-0.9.

5. Conclusions
The approach proposed herein exploits a novel strategy that
uses a multilayer perceptron artificial neural network to
implicitly model the fast and slow streamlfow components
in a modified mass-conserving LSTM. We demonstrate that
the proposed FS-LSTM achieves high prediction skill for
gauges located in southern Brazil. Improvements in the
low streamflow volumes remain a challenge, as well as the
investigation of strategies to transfer these models to other
geographies with less retraining effort.
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