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Abstract

Tackling climate change needs to understand the
complex phenomena occurring on the Planet. Dis-
covering teleconnection patterns is an essential
part of the endeavor. Events like El Nifio South-
ern Oscillation (ENSO) impact essential climate
variables at large distances, and influence the un-
derlying Earth system dynamics. However, their
automatic identification from the wealth of obser-
vational data is still unresolved. Nonlinearities,
nonstationarities and the (ab)use of correlation
analyses hamper the discovery of true causal pat-
terns. We here introduce a deep learning method-
ology that extracts nonlinear latent functions from
spatio-temporal Earth data and that are Granger
causal with the index altogether. We illustrate its
use to study the impact of ENSO on vegetation,
which allows for a more rigorous study of impacts
on ecosystems globally.

1. Introduction

The Earth is a complex, dynamic and networked system.
Land, atmosphere and climate interact constantly, and at
different spatial and temporal scales (Dijkstra, 2013). The
study of the intertwined connections between all spheres
is a subject of active research. A paradigmatic case in
climate sciences are teleconnection patterns; atmospheric
changes in one place may largely impact other processes
in distant regions. Phenomena like El Nifio-Southern Os-
cillation (ENSO) or the North Atlantic Oscillation (NAO),
change regimes and patterns of key essential variables like
moisture, greenness and precipitation. Discovering spatio-
temporal patterns is one of the main goals of the climate
community, and the key to analyze and understand the un-
derlying physical dynamics and processes driving the Earth
system (Guttman, 1989; Larson, 2010).

Summarizing such relations have typically relied on extract-
ing principal components from spatio-temporal data cubes
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and analyzing their (linear) correlation with the ‘summariz-
ing index’ (e.g. ENSO or NAO). A plethora of both linear
and nonlinear dimensionality reduction have been used: ex-
tensions of Empirical Orthogonal Functions (EOF) (Bauer-
Marschallinger et al., 2013; Volkov, 2014; Forootan et al.,
2016) that seek for rotated (Lian & Chen, 2012), oblique
(Hendrickson & White, 1964), and Varimax (Kaiser, 1958)
transformations, as well as more powerful nonlinear meth-
ods based on neural networks (Hsieh et al., 2006), Gaussian
processes (Luttinen & Ilin, 2009), low-rank tensor represen-
tations (Yu et al., 2015) and kernel methods (Bueso et al.,
2020). Then, a simple lag-correlation analysis between the
modes and the index of interest is performed. The approach
is effective but two main -and critical- problems emerge: (1)
the feature extraction is generally disconnected and learned
independently from the index, which leads to a quite arbi-
trary selection of the modes of variability explaining the
phenomena, and importantly (2) the (ab)use of correlation
analysis typically leads to spurious detections, which do
not tell anything about true causal effects. In this paper we
introduce a methodology to address both problems jointly.

Learning representations is now best done with neural net-
works, like autoencoders, normalizing flows or unsupervised
convolutional networks (Hinton & Salakhutdinov, 2006;
Goodfellow et al., 2016; Romero et al., 2016; Reichstein
et al., 2019; Camps-Valls et al., 2021). Neural networks
cope well with highly structured (spatio-temporal) data, are
computationally efficient, and can be engineered to min-
imize meaningful criteria. In our case, we aim to learn
expressive representations that should be causal too. The
goal can be thus framed within the recent field of causal
representation learning (Scholkopf et al., 2021), which aims
to discover high-level causal variables from low-level ob-
servations. Discovering teleconnections fits nicely in this
framework as fundamental observable variables are often
spatio-temporal, while high level relationships between ag-
gregated variables or indices are believed to hold.

We propose learning Granger causal feature representations
with neural networks. We introduce an autoencoder neural
network (Hinton & Salakhutdinov, 2006) trained not only
to optimize the reconstruction error but also the Granger
causality criterion (Granger, 1980) between the latent repre-
sentation and the index under study, e.g. ENSO or NAO. The
architecture allows us to learn latent feature representations
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that are Granger causal with the target index. We illustrate
its use in assessing the impact of ENSO on vegetation.

2. Granger penalized autoencoder

A plethora of unsupervised neural nets are available for
learning representations from spatio-temporal data. Au-
toencoders (Hinton & Salakhutdinov, 2006) aim at repro-
ducing the inputs at the output layer by using the high-
abstraction features learned in the intermediate layers. The
use of autoencoders in remote sensing and geoscience data
is widespread: from feature extraction and image classifica-
tion (Zabalza et al., 2016; Othman et al., 2016), to spectral
unmixing (Guo et al., 2015; Su et al., 2019), and the decom-
position of spatio-temporal Earth data (Tibau et al., 2018).

While the standard autoencoder may retrieve latent features
containing sufficient information for data reconstruction,
performing post-extraction analysis on such latent repre-
sentation could be challenging. For example, the obtained
representation is not assured to be causal, and not even
meaningful for causal discovery methods. To address this
issue, we here propose to train an autoencoder with an ad-
ditional loss term that enforces Granger causality between
one of the elements of the latent representation and a target
signal. The obtained latent representation is thus rewarded
to be (at least partially) a causal effect of the target external
signal.

2.1. Model overview

Let us define a general autoencoder as £ = 1 o ¢ composed
of an encoding function ¢ : RY — R and a decoding
function from the D-dimensional latent representation to
the reconstructed space, v : R? — R see Fig. 1. Now,
given a sequence of input data points x1,...,x7 € RY
sampled uniformly in time and a corresponding target signal
Y1, -..,yr (e.g. ENSO), we consider the following opti-
mization problem:
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where GCl,,(¢1(X1.7), y1.7|d(X1.7)) is the Granger
causality index between the target signal y1.7 and the first
component of the latent representation ¢ (x;.7). Specifi-
cally, for a fixed maximum number of lags L € ZT, it is
defined as
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Figure 1. Learning causal representations with the neural Granger
autoencoder. The architecture is trained to jointly minimize the
reconstruction error of NDVI and the Granger causality index
between ¢ (x(t)) and ENSO y(t — 7), 7 > 0.

where 63 and 67 are the estimated error variances of the
following vector autoregressive models:
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It should be noted that the autoencoder itself is time-agnostic
but the Granger causality component of the optimized loss
imposes time-dependent structure to the latent space. In
addition, the optimized loss is equal to the mean squared
error (MSE) for 5 = 0.

2.2. Explaining representations

An important shortcoming of learning nonlinear represen-
tations with autoencoders is their visualization and inter-
pretation. Actually, interpretability has been identified as
a potential weakness of deep neural networks, in particu-
lar for the geosciences (Lary et al., 2016; Gil et al., 2018;
Blair et al., 2019; Reichstein et al., 2019). EXplainable Al
(XAI) has emerged as an important field in machine learn-
ing (Samek & Miiller, 2019). In this paper we visualize the
spatio-temporal activations of the causal feature represen-
tation with a technique called Neuron Integrated Gradients
(NIG) (Sundararajan et al., 2017; Shrikumar et al., 2018),
which allows to attribute the latent representations ¢4(x) at
the output of the encoder ¢ to each input spatial location z,,
by integrating the gradient along the straight-line path in the
input space from the baseline Z,, to the input x,,, and then
defines feature-wise scores:

Ri(zy) = (xn—in)/ [Voa(x+a- (x—X%))]pnda (2)

=0
Note that if ¢q(X) ~ 0, the scores fulfill ¢4(x) =
>, Ra(xn), so the attribution values deploy a complete
explanation.
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3. Experimental results

In order to assess our approach, we analyze the relationship
between ENSO and vegetation greenness represented via
the normalized difference vegetation index (NDVI) (Rouse
et al., 1974). The index has been used a multitude of stud-
ies as proxy of vegetation status and health, as well as to
quantify impacts of drought and plant stress.

3.1. Data collection

The NDVI was directly computed from MODIS reflectance
data derived from the MCD43A4.006 BRDF- Adjusted Re-
flectance 16-Day L3 Global 500m product (Schaaf & Wang,
2015; Schaaf et al., 2002), which are disseminated from
the Land Processes Distributed Active Archive Center (LP
DAAQC) also available at Google Earth Engine (GEE). The
MCD43A2 MODIS product, which contains ancillary qual-
ity information for the corresponding MCD43 A4 product,
was also used for avoiding low-quality BRDF estimates.
We computed the NDVI at 16 d temporal and 0.5° spatial
scales over 2007-2017 (11 years). Missing values in the
computed NDVI were filled with linear interpolation and as
customary we removed the yearly seasonality from NDVI
by subtracting the means across the selected years.

We used time series of the ENSO34 climate index from the
Royal Netherlands Meteorological Institute (KNMI), which
is calculated daily based on Sea Surface Temperature (SST)
anomalies averaged across the central equatorial Pacific
Ocean (5N-5S, 170W-120W). ENSO34 time series were
resampled to the weekly resolution by simple binning.

3.2. Training and implementation details

The autoencoder is implemented as a dense feedforward
neural network with encoder layers of sizes 256, 128, 64, 32
and 16 and symmetrical decoder layers, being D = 4 the
dimension chosen for the intermediate latent space and L =
20 the lag order. We use Leaky ReLU (0.1) as the activation
function for all hidden layers. The network is trained on
a standard laptop (CPU 1.80 GHz x8 cores and 16 GiB of
RAM) during 500 epochs, using Adam optimizer with a
learning rate of 0.001. The code has been developed in
Python using PyTorch library, and is publicly available on
GitHub'.

3.3. Experimental setup

First, we consider the time period consisting of the years
2014-2017 to train the autoencoder described above. The
selected study period includes the strong 2015-2016 El Nifio
event which has been shown to have an impact on global
photosynthesis (Luo et al., 2018). Then, we train a model
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Figure 2. ENSO index and standardized latent features with and
without the Granger penalization.

with 8 = 0.01 and compare it with the same autoencoder
architecture trained without the Granger causal loss (3 = 0).
Models achieved comparable reconstruction errors for both
choices of .

We perform the standard Granger causality test (with Bon-
ferroni correction for multiple testing) between ENSO and
each component of the learned latent space ¢4. As expected,
and shown in Fig. 2, the first component (¢ ) of the model
trained with 5 = 0.01 (top) obtains a significant corrected
p-value < 10729 in the Granger test with respect to ENSO
being a cause. The model trained with 5 = 0 (bottom) also
achieves one latent component (¢4) for which the Granger
test obtains a significant level of the test statistic but, in
contrast, with a much higher p-value < 0.01.

3.4. Causal footprints of ENSO on vegetation

The 2015/16 El Nifio Event officially started in March 2015,
long lived and was one of the strongest on the long term
record. Several studies have reported severe impacts world-
wide, from central America and Caribbean to south-east
Asia, and mainly in (east and south-east) Africa, which was
impacted by important vegetation degradation (Kalisa et al.,
2019).

Figure 3 shows clear differences between the causal patterns
of ENSO on vegetation before (2014) and during (2015)
the event. Northwest African Sahara was critically im-
pacted (Kogan & Guo, 2017) in 2015, which is clearly
identified by the method. Ethiopia was hit by a severe
drought on both the first and second growing seasons, and
pastoral livelihoods largely affected, as previously reported
in (Philippon et al., 2014) with simple linear correlation.
Similarly, Eritrea was impacted with great reductions on ce-
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Figure 3. Neural integrated gradients for 8 = 0.01 (top) and 8 = 0 (bottom) during second to last observation of each year (columns).
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Figure 4. Box-plots for values of the integrated gradients maps per
main Africa biomes in the year 2015. Values outside the range
[—2, 2] are not shown for a better visualization.

real production in 2016. Another clear pattern stands out in
Southern Africa, where El Nifio led to drier than the average
conditions, which impacted cereal production in subsequent
years. In this region, vegetation photosynthetic activity
tends to be dampened during the warm phases of ENSO and
to increase during the cold ones; such negative gradients
appear as early as December quite remarkably (note that for
B = 0 even a misleading faint positive activation appears).

These results are confirmed when looking at the NIG per
biome in 2015, cf. Fig. 4, where more negative activations

(causal reduction in vegetation health status) are observed
when the causal term is included, § # 0, especially signifi-
cant for the most affected biomes; savannas and croplands
as previously reported (Kogan & Guo, 2017).

4. Conclusions and future work

We introduced a neural network methodology to learn
Granger causal feature representations from spatio-temporal
Earth data. We illustrated its performance in the study of
the impact of ENSO on vegetation. Spatially explicit maps
were derived via integrated gradients of the final model,
which allowed us identifying well-known teleconnection
patterns as well as unveiling other unreported patterns in the
literature.

The proposed methodology is generic and modular, and
allows many instantiations. One could think of replacing
the Granger causality index by others, like the Geweke
or conditional independence tests. While we used a fully
connected dense network for simplicity, convolutional nets
or other architectures could be used as well. In the future,
we aim to study generalization and robustness of the causal
representations. The methodology paves the way to gain
insights on physical processes from Earth data, and leave
mere (and potentially spurious) correlation patterns behind.
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