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Abstract

Operational forecasting centers are investing in
decadal (1-10 year) forecast systems to support
long-term decision making for a more climate-
resilient society. One method that has previously
been employed is the Dynamic Mode Decomposi-
tion (DMD) algorithm — also known as the Linear
Inverse Model — which fits linear dynamical mod-
els to data. While the DMD usually approximates
non-linear terms in the true dynamics as a linear
system with random noise, we investigate an ex-
tension to the DMD that explicitly represents the
non-linear terms as a neural network. Our weight
initialization allows the network to produce sen-
sible results before training and then improve the
prediction after training as data becomes avail-
able. In this short paper, we evaluate the proposed
architecture for simulating global sea surface tem-
peratures and compare the results with the stan-
dard DMD and seasonal forecasts produced by
the state-of-the-art dynamical model, CFSv2.

1. Introduction

In recent years there has been significant effort by major
dynamical modeling groups to perform decadal (1-10 year)
forecasts (e.g., Yeager et al. (2018) and Vecchi (2015)).
These forecasts can bridge the gap from seasonal forecasts
(Kirtman et al., 2014) to multidecadal predictions (Eyring
et al., 2016) and are specifically designed to forecast fluctu-
ations through knowledge of the current climate state and
multi-year ocean variability. Although skill is limited by
the predictability of phenomena like the El NiloSouthern
Oscillation (ENSO), decadal forecasts can provide critical
and actionable information on regional climate trends.

Another strategy for decadal predictions that has received
attention uses data to fit a statistical model. A particular
example of such an approach is found in (Newman, 2013),
in which the Linear Inverse Model, also known as Dynamic
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Mode Decomposition (DMD), is applied to make decadal
forecasts. DMD has been used to successfully model cli-
matic phenomena such as tropical diabatic heating and sea
surface temperatures (SSTs; Huddart et al. (2017)). In its
most basic form, DMD seeks to fit a linear dynamical sys-
tem of the form:

%x = Ax (D

which has an exact solution given by:

x(tg + 1) = ePx(to) )

The dynamics are characterized by the eigenvalues
and eigenvectors of A, typically the leading eigen-
value/eigenvector pairs.

A common strategy in modeling environmental variables
with DMD is to assume that the non-linear dynamics can be
approximated by a linear system with random noise (New-
man, 2013; Shin et al., 2020), usually Gaussian. In this
paper, we seek a different strategy in which we explicitly
model the non-linear term of the dynamics with a neural
network. In particular, our neural network resembles a
Resnet (He et al., 2016) with the difference that, instead of
the identity, the bypass is the DMD solution. Initializing
the non-linear path with small random weights makes the
untrained network predict the DMD solution. After train-
ing, however, results improve compared with this baseline
(similar to (Rodrigues et al., 2018)).

In the next sections, we present our proposed approach,
which we call the Residual DMD Neural Network (Res-
DMD), and apply it to predict sea surface temperature (SST),
comparing it to the standard DMD and a state-of-art dynam-
ical model, CFSv2.

2. Background and Contributions

In this section, we describe the architecture of our network
and the rationale for its structure. We define what the initial-
ization is and the benefit of this choice. Finally, we describe
the training procedure, which, in the current stage of this
work, could be further optimized, but we leave this as future
work.
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A multidimensional environmental variable x (typically an
anomaly with respect to the long-term average, i.e. the
climate mean), whose components extend over the spatial
domain, can be modeled as:

& It N 3)
where L is the linear part of the dynamics, and IV represents
nonlinear terms. N is usually, however, approximated by a
linear operator, as in (Winkler et al., 2001). This approach
has the major benefit of easiness to compute, since it relies
on the computationally efficient singular value decompo-
sition (SVD) algorithm. Nonetheless, one can only fully
understand the system statistics by knowing the form of N.

Here, we seek to approximate the nonlinear term N as a neu-
ral network trained with stochastic gradient descent (SGD).
We leverage, however, the structure and procedure for train-
ing the linear part from previous work (such as (Winkler
et al., 2001) and (Newman, 2013)). The procedure for train-
ing the linear part is the Dynamic Mode Decomposition
(DMD), also known as Linear Inverse Model in the atmo-
spheric sciences.

One of the greatest advantages of the DMD method is to
project the dynamics of the system being studied into a low-
dimensional space, spanned by a set of spatially correlated
modes that have the same linear behavior in time (Kutz et al.,
2016). In discrete form the solution is given by:

x(to +n x At) = A" DT x(t) 4)
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Figure 1. Comparison between Resnet block and ResDMD block.

in which ® and A are the eigenvectors and eigenvalues
of the matrix (A) approximating the system in Equation
3. The pseudo inverse of ®, i.e. ®f, projects the state
variable x into a low dimension space. Its dimension size is

given by the leading eigenvalues of A, whose number is a
hyperparameter of the method.

Our proposed model also operates initially in the same low
dimensional space as the DMD model. Its first step is to use
the matrix ® to project the initial state vector, which in our
case extends over the whole globe:

b= dx (5)

This approach has the advantage of reducing the risk of
overfitting with high dimensional data as the dynamics are
restricted to this low dimensional sub-space. The projection
matrix is an optimizable parameter in our model which can
be further optimized to best fit observations during the SGD
procedure.

In order to approximate the non-linear terms of the dynam-
ics, we use a neural network architecture (with parameters
w) similar to the Resnet (He et al., 2016). The key assump-
tion of Resnet is that it is easier to optimize the residual
mapping than to optimize the original unreferenced signal.
The reference in that neural network is the signal itself, i.e.
an identity mapping (Figure 1 top). Our ResDMD archi-
tecture is similar, but the reference in our case is the DMD
solution (Figure 1 bottom).

Initializing the weights of the projection matrices and A
with the DMD matrices, and initializing the weights w to
small random values effectively makes the SGD procedure
look for a solution with a non-linear additive term close
to the DMD solution. As one accumulates more and more
observation data and trains the model, the network better
approximates equation 3. In the next section, we evalu-
ate ResDMD with SST forecasts compared to the standard
DMD procedure and the CFSv2 model.

Our model can be further stacked in larger networks, simi-
larly to the very deep Resnet models. Additional restrictions,
such as shared parameters between layers for instance, can
be added. In this paper, we only show results with a single
block to test the viability of the method.

The training procedure is basically divided in two stages.
First, we fit a DMD model to the observed data (training set).
The resulting matrices ® and A are then used to initialize the
corresponding weights of the neural network. In addition,
the weights w are initialized with small random values so
that the untrained network produces the DMD solution. The
second stage corresponds to the SGD optimization proce-
dure, in which we run through the training set again. In this
stage, all parameters (®, A and w) are updated.
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3. Experiments

In order to test the performance of the ResDMD, we trained
and tested it with sea surface temperature (SST). This vari-
able is known to be an important predictor for regional
climate trends and consequential weather events (Kaper &
Engler, 2013), and it is reasonably slow varying making
it a good candidate for a first target variable. We hereby
compare performance of the ResDMD with the standard
DMD and CFSv2 seasonal forecast ensemble.

The SST dataset used in our experiments is the Extended Re-
constructed Sea Surface Temperature, Version 5 (ERSSTVS)
(Huang et al., 2017). It provides estimates of SSTs from
1854 to present and is most reliable from 1950. Its spatial
resolution is two degrees and is available monthly. We also
use the CFSv2 seasonal forecasts as a benchmark for our
predictions; it was not used as input to our model.

Instead of directly predicting absolute values, a common
practice in long range forecasts of SST and other climate
variables is to predict anomalies from the expected value
(Tippett et al., 2018). (The strong seasonality in this data
can bias the evaluation metric.) We computed anomalies
by subtracting a monthly climate mean (from the period
1980 to 2010) from the corresponding training and testing
sets. For ERSSTVS, the training set ranged from 1850-2010
and the test set from 2011 to 2020. In addition, we com-
puted CFSv2 forecast anomalies using the CFSv2 forecast
climatologies from 1980 to 2010. This extra precaution
aims to make the comparison with CFSv2 more realistic —
computing forecast anomalies from observed climate means
(in this case ERSSTVS) could hurt the CFSv2 performance
by exposing model biases (Kumar et al., 2012) and confer
an unfair advantage to our model.

After training the standard DMD model and ResDMD with
the training set, we evaluated the performance in the test
set using the anomaly correlation coefficient (ACC), which
is commonly used to measure the skill of a forecast sys-
tem (Owens & Hewson, 2018). ACC values closer to unity
indicate higher skill of the forecast system. We also used
an ACC difference (AACC) to compare both the standard
DMD and ResDMD to CFSv2. Positive values of AACC in-
dicate the corresponding DMD model is better than CFSv2,
and negative values indicate the opposite.

4. Results

In this section, we present some of the ACC maps we ob-
tained in order to compare ResDMD with the standard DMD
and CFSv2. The number of points for each spatial coordi-
nate in those maps corresponds to the number of years in
our test set (10 years) times twelve months.

Figure 2 shows ACC values for the standard DMD (top)
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Figure 2. ACC of SST forecast of 6 months lead time over the
2010 to 2020 period

and ResDMD (bottom) models. This particular example
corresponds to predictions 6 months in advance (6-month
lead time). Overall, ResDMD shows higher skill than the
standard DMD. In particular regions of low correlation, such
as the southern Atlantic Ocean, southern Indian Ocean and
eastern Pacific Ocean, ResDMD improves skill considerably
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Figure 3. AACC of SST forecast of 9 months lead time over the
2011 to 2020 period compared to CFSv2
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compared to the standard model. However, skill in the east-
ern tropical Pacific (where ENSO dynamics are observed)
does not improve as much. In order to better understand this
behaviour we compare results to CFSv2.

Figure 3a-3b presents the AACC for the standard DMD
ACC and CFSv2, and ResDMD and CFSv2, respectively.
Positive values indicate the DMD models are more skillful
than the CFSv2. Here, we are only showing AACC for 9-
month lead times. Again, overall one can see that ResDMD
performs significantly better than the standard model. In
addition, ResDMD also performs better in many places than
the CFSv2. However, ResDMD has less skill in the eastern
Pacific/ENSO region compared to CFSv2, a pattern that is
also observed at other lead times (not shown). A possible
explanation for the lack of skill in this region is that the
dynamics of the state variable — explicitly simulated by
CFSv2 — may be driven by a forcing term, which is strong
enough to change the internal dynamics of this variable.
In order to tackle this issue, we are exploring additional
predictors such as 150-mb geopotential height.

Finally, we present longer range forecasts by the standard
DMD and ResDMD (Figure 4) For 1-year lead time, the
proposed ResDMD clearly performs better than the stan-
dard DMD across most of the globe. For 5-year lead time,
the ResDMD error increases is specific locations such as
the southern Indian Ocean, however it remains more skill-
ful overall than the standard DMD. The ResDMD errors
continue to amplify with lead time, and we conjecture that
at longer lead times (e.g., 7-10 years) the ResDMD is no
longer appropriate. We are actively exploring deeper neural
networks with additional regularization for these longer lead
times which will have the effect of damping the forecast
close to the climate mean, however.

5. Final remarks

In this paper, we proposed a novel extension to the DMD
method (ResDMD) that models non-linear additive terms
of a dynamical system as a neural network. Weight initial-
ization is such that, before the SGD training, the prediction
is already a sensible forecast. We have shown predictions
of global SSTs compared to the standard DMD and CFSv2,
with notable improvements in some regions.

The objective of the ResDMD model is to make decadal
forecasts which are becoming increasingly important for cli-
mate change policy and to underpin other decision-making.
We believe that data-driven methods, such the one proposed
here, will be an important tool along with physically-driven
methods to perform such forecasts. We expect to combine
these two types of methods (i.e., a hybrid physical-statistical
approach) in forthcoming work to address the shortcomings
of the ResDMD approach.
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(f) ResDMD - 10 years lead time

Figure 4. ACC of SST forecast
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