

Power System Cascading Failure Mitigation by Reinforcement Learning

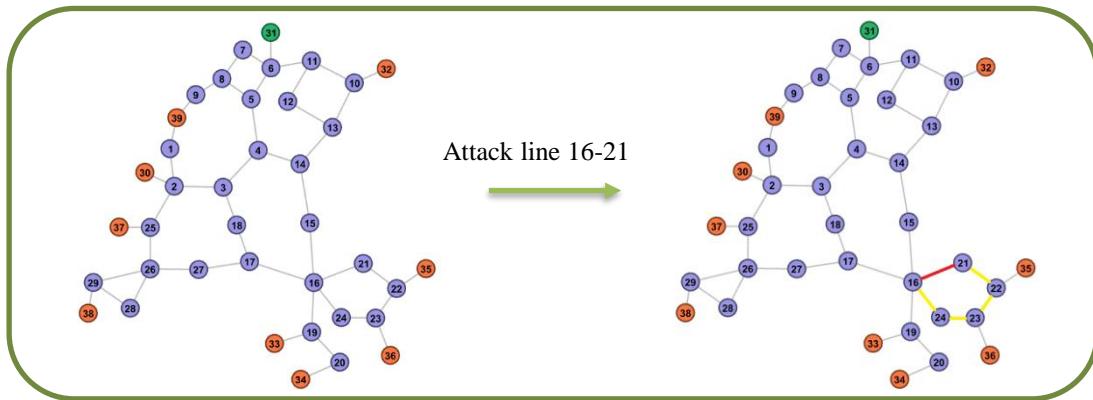
Yongli Zhu
Texas A&M University, USA
June.27.2021

Outline

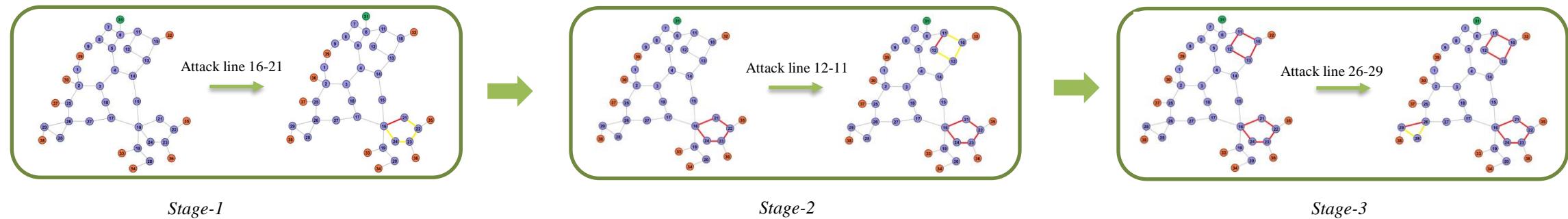
- 1. Motivation of Multi-Stage Cascading Failure
- 2. Formulation of Multi-Stage Cascading Failure
- 3. Mitigation Strategy by RL
- 4. Case Study
- 5. Conclusions and Future Work

1. Motivation of Multi-stage Cascading Failure

- Single-Stage Cascading Failure problem has been widely studied by power systems community

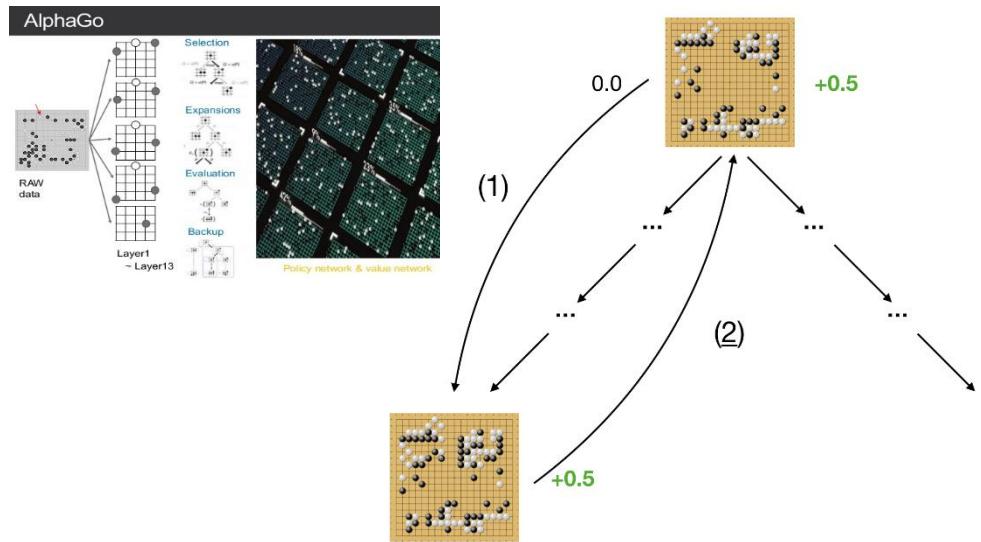
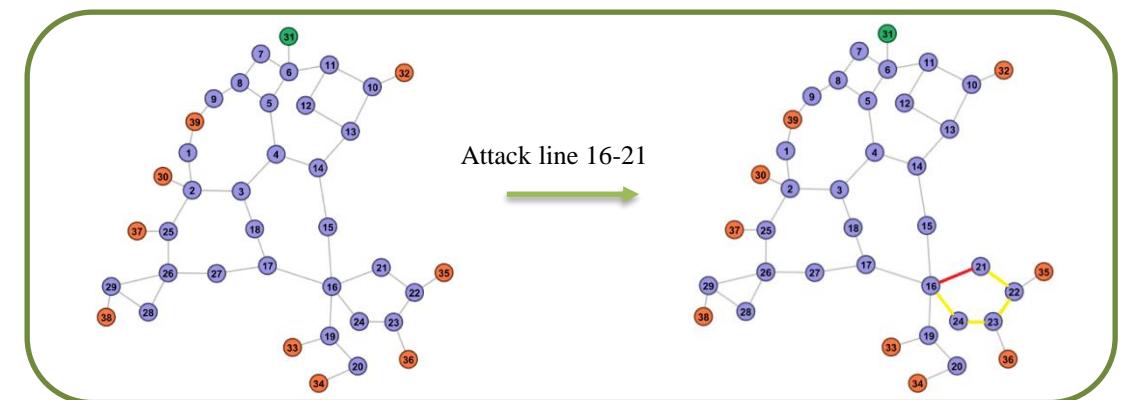


- However, succeeding outage stages can happen one by one closely, e.g. a wind storm happens first, **then** followed by the mis-operation of human operators → Thus, **Multi-Stage Cascading Failure (MSCF) problem** is proposed.



1. Motivation of Multi-stage Cascading Failure

- Can we use any control strategy to mitigate (limit or reduce) such kind of cascading failures? => Yes
 - Strategy options: load shedding, generation adjustment, line switching, transformer tap-ratio change, etc.
- How to determine which control strategy to use and when to use?
 - 1) Conventional approach like SCOPF may be useful for Single-Stage Cascading Failure problem
 - 2) However, for Multi-Stage Cascading Failure, both the **timing (order)** and **type** of the consecutive attacks (e.g. faults) can be **unknown or stochastic**. Only using SCOPF may not handle the MSCF problem well.
- We can resort to data-driven / machine learning methods
- Inspiration from *Alpha-Go* by Google



2. Formulation of Multi-Stage Cascading Failure

- Generation: one “event” of the cascading failures within one stage, e.g. a line tripping.
- Stage: after an attack (e.g. one line is broken by a natural disaster), the grid evolves with a series of potential *generations*. Finally, the power system will either reach a new equilibrium point if it exists; or the system collapses.
- Example simulation results of the IEEE 118-bus (= node) system for a two-stage MSCF problem in two independent episodes:

Table 1. Result of Episode-1

<i>Stage-1</i>	ACPF converge	Over limit Lines
<i>Generation-1</i>	Yes	0
<i>Stage-2</i>	ACPF converge	Over limit Lines
<i>Generation-2</i>	Yes	0

Win

* ACPF (alternative current power flow): a set of nonlinear equations that a power grid needs to satisfy when it reaches steady state.

Table 2. Result of Episode-2

<i>Stage-1</i>	ACPF converge	Over limit Lines
<i>Generation-1</i>	Yes	2
<i>Generation-2</i>	Yes	0
<i>Stage-2</i>	ACPF converge	Over limit Lines
<i>Generation-1</i>	Yes	4
<i>Generation-2</i>	Yes	2
<i>Generation-3</i>	Yes	2
<i>Generation-4</i>	Yes	3
<i>Generation-5</i>	Yes	10
<i>Generation-6</i>	Yes	20
<i>Generation-7</i>	No	--

Result Lose

$$0 = -P_i + \sum_{k=1}^N |V_i||V_k|(G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik})$$

$$0 = -Q_i + \sum_{k=1}^N |V_i||V_k|(G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik})$$

2. Formulation of Multi-stage Cascading Failure

- Mimicking the corrective controls by DCOPF

$$\min_{p_i, p_j} \sum_{i \in G} c_i p_i + \sum_{j \in D} d_j (p_j - P_{d_j})$$

$$\text{s.t. } \mathbf{F} = \mathbf{A} \mathbf{p}$$

$$\sum_{k=1}^n p_k = 0$$

$$P_{d_j} \leq p_j \leq 0,$$

$$P_{gi}^{\min} \leq p_j \leq P_{gi}^{\max},$$

$$-F_L^{\max} \leq F_l \leq F_L^{\max},$$

Objective function

Branch flow representation

Power balance constraint

$j \in D$ Load power constraint

$i \in G$ Generator power constraint

$l \in L$ Branch power constraint

“Load shedding amount”
of each load bus (MW)

- c_i, d_j : generation cost / load shedding cost per unit power (e.g., \$/MW); p_i : generator power (MW)
- P_{d_j} : original load power (MW); p_j : load power (MW) (here the sign of electric power is *negative* for load)
- \mathbf{A} : a constant matrix to associate the net nodal power injections with the branch power flows.
- \mathbf{F} : a vector of all the branch flows; $\mathbf{p} = [p_k], k = 1 \dots n$: represents the net nodal power injections.
- n : the total bus number; G, D, L : respectively the generator set, load set and branch set

3. Mitigation Strategy by RL

Environment:
MATLAB + power grid simulation engine

Applying RL/DRL in Cascading Failure Mitigation

• 1) Reward design (of each Stage)

- Total generation cost (i.e. the negative objective function value of DCOPF) (if converge);
- -1000 , if DCOPF or ACPF diverge;
- $+1000$, if system finally reaches a new steady state at the last stage.

• 2) Action design

- In the previous DCOPF formulation, the “branch flow limit” F_L^{max} is adopted as the action.

• 3) State design

- $[branch_loading_status, V_1, \theta_1, P_1, Q_1, \dots, V_n, \theta_n, P_n, Q_n]$ (voltage magnitude, voltage angle, active power, reactive power)

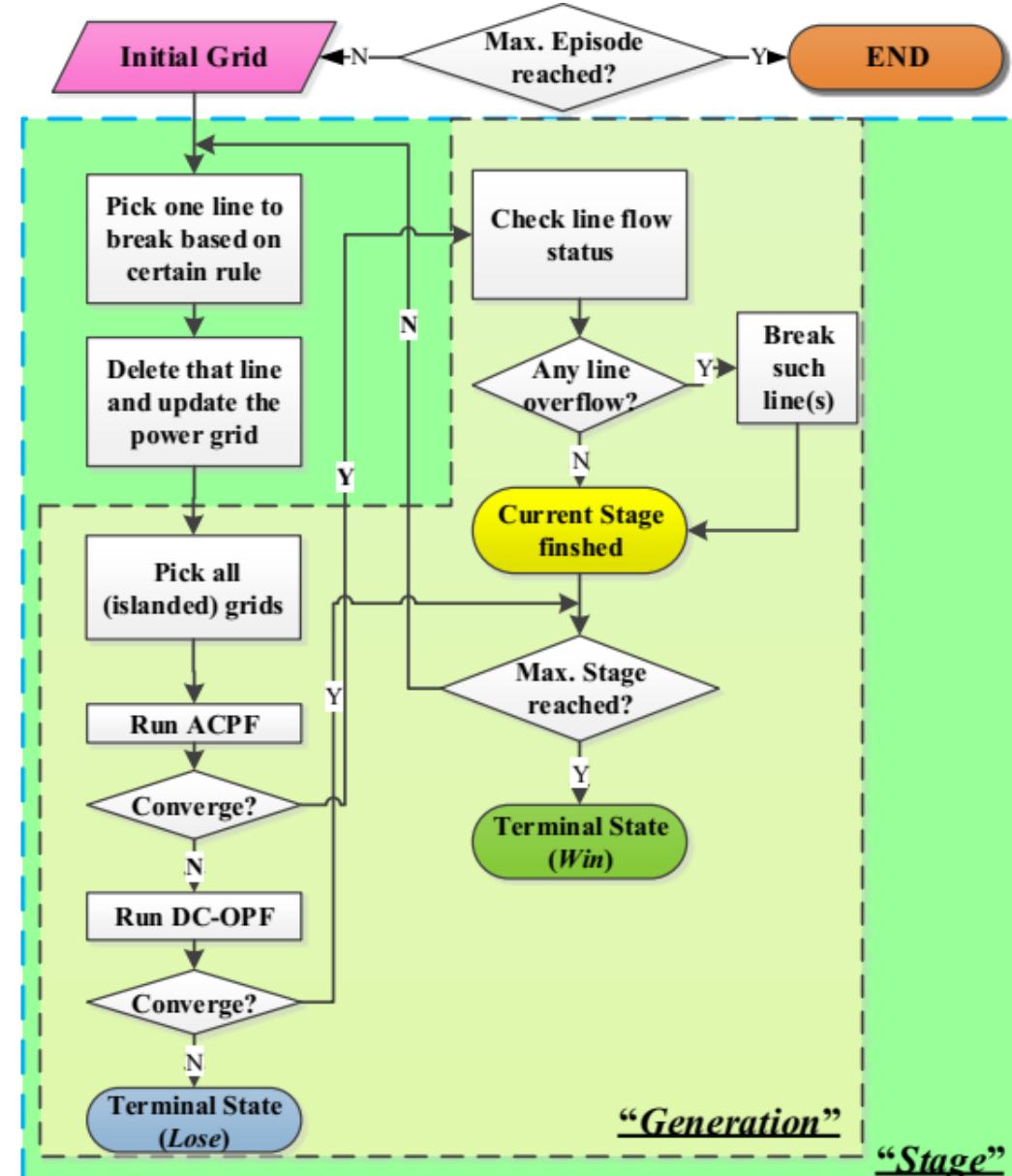
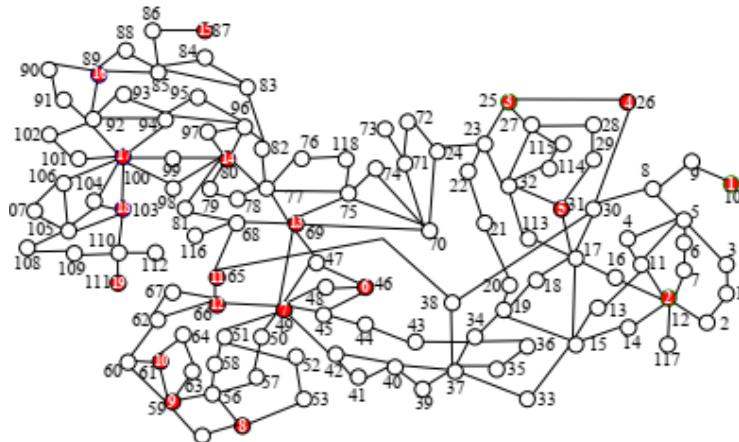


Figure 1. The overall workflow of grid simulation for MSCF study.

4. Case Study

- **Test power grid:**
- IEEE 118-bus system



It contains:
137 buses (nodes)
• 19 generators buses (red dots)
• 91 loads buses
186 lines (parallel lines included)

- **Network-1: SARSA (On-policy TD)**
- **Shallow Neural Network (RL)**

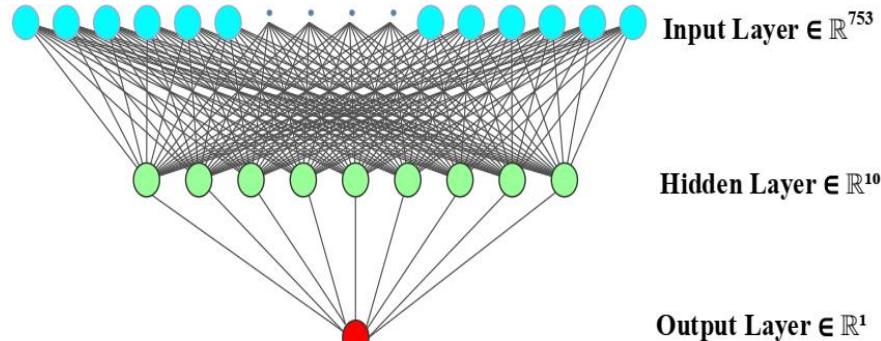


Figure 4. The shallow neural network structure used in RL.

Network architecture is:

- one input layer, one output player
- one hidden layer with 10 neuron units

Input:

- a 1-D vector with 753
($=137 \times 4 + 177 + 28$) elements

Output:

- the action in the RL framework (i.e.,
the line flow limit F_L^{max})

Action is bounded by [0.80, 1.25]

- **Network-2: *Q*-learning (Off-policy TD)**
- **Deep Neural Network (DRL)**

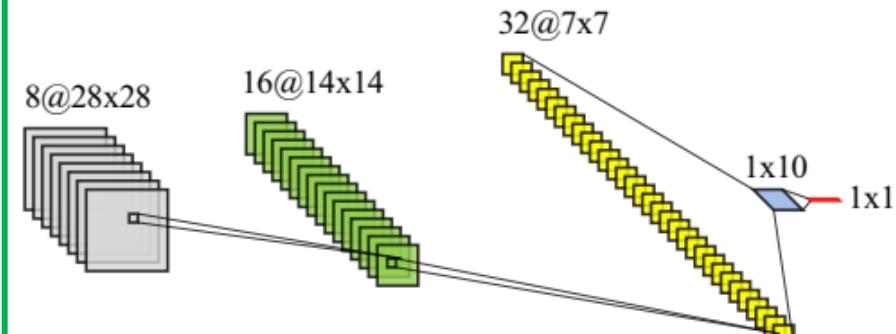


Figure 3. The network structure used in Deep RL.

Image-like input: $784 = 28 \times 28$ (extend the original input (length = 753) by padding extra zeros

The output of the 2nd-last layer (dim 1×10) is used in both ε -greedy and greedy policies

The candidate set of Action:
[0.8, 0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.20, 1.25]

4. Case Study

Table 3. Learning Performance

PERFORMANCE	SHALLOW NETWORK	DEEP NETWORK
Win rate	78.00%	78.07%
Avg. reward	640.08	630.46

Maximum episode number = 10000 (for both networks)

Learning rate = 0.0001, and the discount rate $\gamma = 0.7$

Maximum stage number = 3

It can be observed that:

- 1) Both RL and Deep RL have achieved satisfactory results in terms of winning rates (i.e., *fewer system collapses*).
- 2) The higher the average winning rate, the lower the average reward may become; and vice versa.
 - One explanation is: if the system operator (RL agent) is willing to shed (cut) more load then the *system typically recovers faster* (i.e. toward *winning*); but that way *will also increase the obj. function* (thus reduce the average reward).

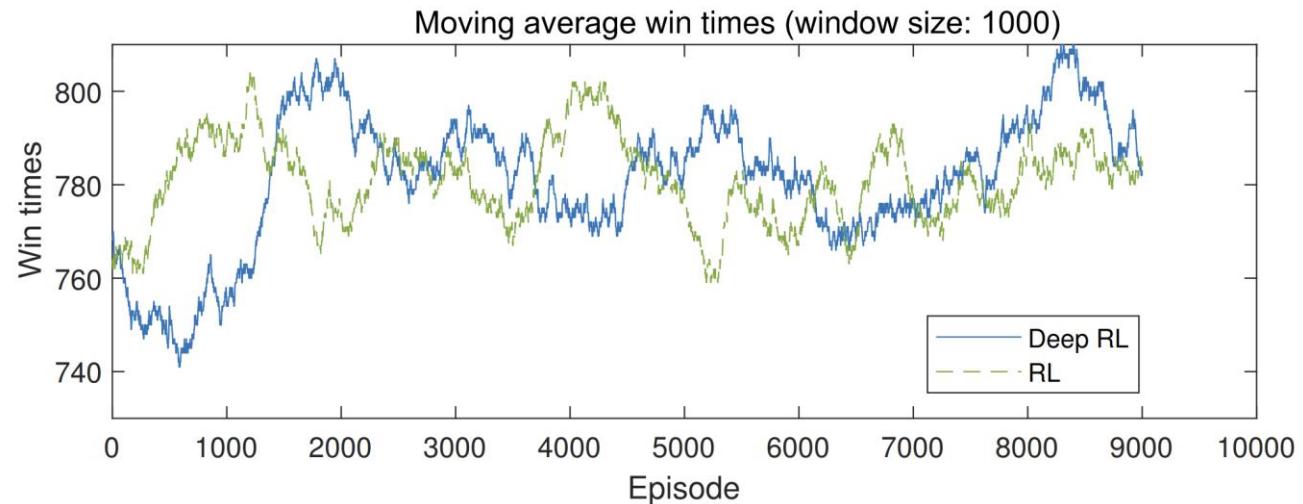


Figure 4. Moving average win times by RL and DRL

5. Conclusions and Future Work

- A Multi-Stage Cascading Failure (MSCF) problem is proposed and formulated
- A systematic (deep) RL framework is designed for the mitigation of MSCF problem.
- The proposed RL-based mitigation strategy works effectively on the IEEE 118-bus system under both shallow and deep architectures.
- Future work
 - Investigate effects of hyper-parameters (layer numbers, learning rate, discount factor, etc.) of the neural networks on the mitigation performance
 - Consider more control options e.g. transformer tap ratio, energy storage, etc.