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• Single-Stage Cascading Failure problem has been widely studied by power systems community

• However, succeeding outage stages can happen one by one closely, e.g. a wind storm happens first, then followed 
by the mis-operation of human operators ➔ Thus, Multi-Stage Cascading Failure (MSCF) problem is proposed.

1. Motivation of Multi-stage Cascading Failure
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• Can we use any control strategy to mitigate (limit or reduce) such kind of cascading failures? => Yes

• Strategy options: load shedding, generation adjustment, line switching, transformer tap-ratio change, etc.

• How to determine which control strategy to use and when to use?

• 1) Conventional approach like SCOPF may be useful for Single-Stage Cascading Failure problem

• 2) However, for Multi-Stage Cascading Failure, both the timing (order) and type of the consecutive attacks (e.g. faults) can be unknown or 
stochastic. Only using SCOPF may not handle the MSCF problem well.

• We can resort to data-driven / machine learning methods

• Inspiration from Alpha-Go by Google

1. Motivation of Multi-stage Cascading Failure
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2. Formulation of Multi-Stage Cascading Failure

• Generation: one “event” of the cascading failures within one stage, e.g. a line tripping.

• Stage: after an attack (e.g. one line is broken by a natural disaster), the grid evolves with a series of 
potential generations. Finally, the power system will either reach a new equilibrium point if it 
exists; or the system collapses.

• Example simulation results of the IEEE 118-bus (= node) system for a two-stage MSCF problem in 
two independent episodes:

Table 1. Result of Episode-1 Table 2. Result of Episode-2

* ACPF (alternative
current power flow):
a set of nonlinear
equations that a
power grid needs to
satisfy when it
reaches steady state.

* https://en.wikipedia.org/wiki/Power-flow_study



2. Formulation of Multi-stage Cascading Failure

• Mimicking the corrective controls by DCOPF

• ci  , dj : generation cost / load shedding cost per unit power (e.g., $/MW);  pi : generator power (MW)

• Pdj : original load power (MW); pj : load power (MW) (here the sign of electric power is negative for load)

• A: a constant matrix to associate the net nodal power injections with the branch power flows.

• F: a vector of all the branch flows; p = [pk], k = 1…n: represents the net nodal power injections. 

• n: the total bus number;  G, D, L: respectively the generator set, load set and branch set

Branch flow representation

Power balance constraint

Load power constraint

Generator power constraint

Branch power constraint

Objective function

“Load shedding amount”
of each load bus (MW) 



3. Mitigation Strategy by RL

Applying RL/DRL in Cascading Failure Mitigation

• 1) Reward design (of each Stage)

• −Total generation cost (i.e. the negative objective function value 
of DCOPF) (if converge);

• −1000, if DCOPF or ACPF diverge; 

• +1000, if system finally reaches a new steady state at the last stage.

• 2) Action design

• In the previous DCOPF formulation, the “branch flow limit” FL
max

is adopted as the action.

• 3) State design

• [branch_loading_status, V1, 1, P1, Q1,…,Vn, n, Pn, Qn] (voltage 
magnitude, voltage angle, active power, reactive power)

Environment: 

MATLAB + power grid simulation engine

Figure 1. The overall workflow of grid simulation for MSCF study.



4. Case Study

• Test power grid: 
• IEEE 118-bus system

• Network-1: 
• Shallow Neural Network (RL)

• Network-2: 
• Deep Neural Network (DRL)

Image-like input: 784 = 28×28 (extend the 

original input (length = 753) by padding 

extra zeros

The candidate set of Action:
[0.8, 0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.20, 1.25]

The output of the 2nd-last layer (dim 1×10) 

is used in both  - greedy and greedy policies

Network architecture is:
• one input layer, one output player

• one hidden layer with 10 neuron units 

Input: 
• a 1-D vector with 753 

(=137×4+177+28) elements

Output: 
• the action in the RL framework (i.e., 

the line flow limit FL
max)

Action is bounded by [0.80, 1.25]

It contains:

137 buses (nodes)
• 19 generators buses (red dots)

• 91 loads buses

186 lines (parallel lines included)

SARSA (On-policy TD) Q-learning (Off-policy TD)



4. Case Study

Table 3. Learning Performance 

Maximum episode number = 10000 (for both networks)

Learning rate = 0.0001, and the discount rate γ = 0.7

It can be observed that:

1) Both RL and Deep RL have achieved satisfactory results in terms of winning rates (i.e., fewer system collapses).

2) The higher the average winning rate, the lower the average reward may become; and vice versa. 
• One explanation is: if the system operator (RL agent) is willing to shed (cut) more load then the system typically recovers 

faster (i.e. toward winning); but that way will also increase the obj. function (thus reduce the average reward).

Figure 4. Moving average win times by RL and DRL

Maximum stage number = 3



5. Conclusions and Future Work

• A Multi-Stage Cascading Failure (MSCF) problem is proposed and 
formulated

• A systematic (deep) RL framework is designed for the mitigation of 
MSCF problem.

• The proposed RL-based mitigation strategy works effectively on the 
IEEE 118-bus system under both shallow and deep architectures. 

• Future work

• Investigate effects of hyper-parameters (layer numbers, learning rate, discount 
factor, etc.) of the neural networks on the mitigation performance

• Consider more control options e.g. transformer tap ratio, energy storge, etc.


