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Abstract

This paper proposes a cascading failure mitigation
strategy based on Reinforcement Learning (RL).
The motivation of the Multi-Stage Cascading Fail-
ure (MSCF) problem and its connection with the
challenge of climate change are introduced. The
bottom-level corrective control of the MCSF prob-
lem is formulated based on DCOPF (Direct Cur-
rent Optimal Power Flow). Then, to mitigate the
MSCEF issue by a high-level RL-based strategy,
physics-informed reward, action, and state are de-
vised. Besides, both shallow and deep neural net-
work architectures are tested. Experiments on the
IEEE 118-bus system by the proposed mitigation
strategy demonstrate a promising performance in
reducing system collapses.

1. Introduction

Increasing renewable sources (e.g., wind, solar) are inte-
grated into modern power grids to reduce emissions. How-
ever, due to the intermittent natures of those renewable
sources, the original power grid can become fragile, i.e.,
more easily affected by various risks. Among those risks,
the cascading failure is one of the most challenging issues
necessary to be addressed (Sun et al., 2019). A cascading
failure is defined as a series of consecutive malfunctions of
physical components (e.g., power transmission lines, power
substations). A cascading failure is typically caused by an
unexpected natural disaster such as a hurricane, typhoon, or
flood. Severe cascading failures can lead to a total system
collapse (i.e., disintegrated into small energized pieces) or
even a blackout event (i.e., loss of electricity for the entire
city or country). To recover the power grid to a healthy state,
backup generators need to be turned on. The relevance of
the cascading failure problem to climate change is:

1) Given the increase in extreme weather events due to
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climate change, having a stable power grid is critical for
renewable resources integration;

2) The backup generators are typically fossil-fuel (e.g., coal,
diesel) based units that emit greenhouse gases.

Therefore, it is meaningful to develop nuanced strategies to
mitigate a cascading failure at its early stage with as little
generation cost as possible.

The cascading failure mitigation can be regarded as a
stochastic dynamic programming problem with unknown
information about the risk of failures. Previous researches
try to tackle this problem based on either mathematical
programming methods or heuristic methods. For example,
bi-level programming is used to mitigate cascading fail-
ures when energy storages exist (Du & Lu, 2014). In (Han
et al., 2018), an algorithm based on percolation theory is
employed for mitigating cascading failures by using UPFC
(Unified Power Flow Controller) to redistribute the system
power flow more evenly. In (Tootaghaj et al., 2018), a re-
covery plan for load-serving from cascading failures was
put forward considering the uncertainty of failure locations.
In (Cordova-Garcia et al., 2018), a cascade control algo-
rithm using load shedding considering the communication
network delays for power grids was proposed to reduce the
failure of power lines. In (Shuvro et al., 2017), By charac-
terizing the cascading-failure dynamics as a Markov chain
model, it is found that the impact of human-operator action
will have a significant impact on cascading failures.

However, some of the above research share the same limita-
tion: unrealistic assumptions are often made, which yield
impractical control strategies in terms of time or economic
cost. Different from communication networks and social
networks, the power grid is not a pure-mathematical graph,
but a physical grid. Its node (called “bus” in power sys-
tem terminology) and edge (called “branch” in power sys-
tem terminology) are both physical entities that can not
be added or removed arbitrarily. On the other hand, most
power system lines are equipped with automatic protection-
relay devices, which can trip the line when the line cur-
rent/power/temperature exceeds certain thresholds in a pre-
defined time window. Thus, in this paper, the main focus is
on branch failures rather than node failures.

Meanwhile, some emerging artificial intelligence technolo-
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gies, such as reinforcement learning (RL) and deep learning
(DL), have nourished both the fields of power systems and
control theory (Kiumarsi et al., 2018). In (Glavic et al.,
2017), a holistic literature review is given on the recent
development of RL applications in the power system area,
though topics regarding cascading failure are not covered.
In (Vlachogiannis & Hatziargyriou, 2004), the RL method
is used for reactive power control. In (Liu et al., 2018), volt-
age restoration for an islanded microgrid is achieved via a
distributed RL method. In (Zhu et al., 2018), an application
for disturbance classification is proposed based on image
embedding and convolutional neural network (CNN). In
(Yan et al., 2018), deep learning is applied in power con-
sumption forecasting. However, the application of RL or
DL for cascading failure study are less reported.

In this paper, a reinforcement learning approach is designed
for the mitigation of cascading failures with the following
contributions:

* 1) Propose and formulate a novel problem called Multi-
Stage Cascading Failure (MSCF) for the first time.

* 2) Present a systematic reinforcement learning frame-
work to tackle the MSCF problem. Similar to AlphaGo
(Silver et al., 2016), a “two-player game* idea is uti-
lized in this study.

¢ 3) Unlike some previous study which treats power grid
purely as a graph model with no or less physical back-
ground, this paper uses a professional power system
simulator as the environment in the RL framework to
better reflect actual characteristics of the power system.
In this way, the learning result is more convincing, and
the trained mitigation strategy will be more practical.

The remaining parts of this paper are organized as follows.
Section 2 proposes an RL-based control framework for the
mitigation of cascading failures. Section 3 presents the case
study and results analysis. Finally, conclusions and future
directions are given in Section 4.

2. Multi-Stage Cascading Failure Control
2.1. Multi-Stage Cascading Failure (MSCF) Problem
Firstly, the following definitions are given:

Generation: one event of the cascading failures within one
stage, e.g., a line tripping (Qi et al., 2015).

Stage: after an attack (e.g., one line is broken by a natural
disaster), the grid evolves with a series of potential gener-
ations (e.g., line tripping events if the line thermal limits
are reached). At the end of each stage, the power system
will either 1) reach a new equilibrium point if the ACPF

(Alternative Current Power Flow) converges and all branch
flows are within secure limits or 2) become collapsed.

In conventional cascading failure analysis, typically only
one stage is considered (Qi et al., 2017). However, in cer-
tain situations, succeeding stages might follow shortly. For
example, a wind storm results in one generation, in which
certain lines are lost, and the system reaches a new steady
state. Then, shortly, a new stage is invoked by tripping an
important line due to the misoperation of human-operator
or relay protection. As an example, Table 1 and 2 list the
simulation results of the IEEE 118 system for a two-stage
MSCEF problem in two independent episodes.

A naive way to handle this complicated multi-stage scenario
is to tackle each stage independently by existing method e.g.
SCOPF (Security Constrained Optimal Power Flow). How-
ever, merely using SCOPF may not work well due to the
overlook of the correlations between any two consecutive
stages. For example, the previous study (Zhu et al., 2014;
Chen et al., 2007) found that sequentially attacking each line
one by one can sometimes achieve a more severe effect (i.e.,
more components loss) than attack multiple lines simultane-
ously. Thus, the MSCF problem should be considered from
a holistic perspective.

2.2. Mimicking the corrective controls by DCOPF

When a failure event happens, the following DCOPF (Direct
Current Optimal Power Flow) is adopted (Chen et al., 2019)
to mimic the bottom-level control measures, i.e., changing
generator outputs and shedding loads (if necessary).
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Table 1. Result of Episode-1.
st | ACPF OVER-LIMIT
age- CONVERGE LINES
Generation-1 YES 0
st ) ACPF OVER-LIMIT
age- CONVERGE LINES
Generation-2 YES 0
Result WIN
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Where, 7 is the total bus number. G, D, L are respectively
the generator set, load set and branch set; F = [F}](l € L)
represents the branch flow; p;(i € G) is the generation dis-
patch for the i-th generator; p;(j € D) is the load dispatch
for the j-th load; p = [px], & = 1...n represents the (net)
nodal power injections. A is a constant matrix to associate
the (net) nodal power injections with the branch flows. Py
is the normal demand value for the j-th load; ¢; is the given
cost coefficient of generation; d; is the given cost coefficient
of load shedding. p;(i € G) and p;(j € D) are the decision
variables for generators and load respectively.

2.3. Apply RL for MSCF problem

To apply RL to a specific power system problem, the first
step is to map physical quantities of the power grid to com-
ponents of the RL framework, i.e., reward, action, and state.

1) Reward design (of each stage)

e —Total generation cost (i.e., the negative objective value
of DCOPF), if DCOPF converge.

e —1000, if DCOPF or ACPF diverge.

e +1000, an extra reward if system finally reaches a new
steady-state at the last stage.

Those values (+=1000) are based on by trial-and-error exper-
iments.

2) Action design

o If the line flow limit is too low, the DCOPF might not
converge due to the narrow feasible region. On the contrary,
if the line flow limit is too high, the feasible region also
becomes large. However, the obtained optimal solution
might lead to an operation point with tighter power flow
status on each branch, resulting in cascading failures at
the next stage of the MSCF problem. Thus, the “branch
flow limit” F;"*** in the previous DCOPF formulation (2) is
adopted as the action in the RL learning framework.

3) State design

Table 2. Result of Episode-2.

Stage-l ACPF OVER-LIMIT
CONVERGE LINES
Generation-1 YES 2
Generation-2 YES 0
Stage-2 ACPF OVER-LIMIT
CONVERGE LINES
Generation-1 YES 4
Generation-2 YES 2
Generation-3 YES 2
Generation-4 YES 3
Generation-5 YES 10
Generation-6 YES 20
Generation-7 No -
Result LOSE

e Several quantities of each bus and the power flow of
each branch are chosen and packed as the state, i.e.,
state=[branch_loading_status, Vi,01, P1,Q1, ..., Vu,

01, Pp,Qr], where, branch_loading_status are the per-
centage values calculated by dividing each branch flow by its
loading limit for all the branches; V;,0;, P;, Q;(i = 1...n)
are respectively the voltage magnitude, voltage angle, active
power injection, and reactive power injection of each bus.

4) Environment

o In this study, the learning environment in the RL frame-
work is just the power grid itself. Thus, a co-simulation
platform based on DIgSILENT and MATLAB is imple-
mented. A professional tool DIgSILENT (DIg) is adopted
as the simulator (environment) to provide all needed infor-
mation (states and rewards) to the RL network for training.
Besides, the concept of step within one independent episode
corresponds to one stage in the MSCF problem.

Finally, the overall workflow of the power grid simulation
for the MSCEF study is shown in Figure 1.
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Figure 1. The overall workflow of grid simulation for MSCF study.

3. Case Study

In this section, a modified IEEE 118-bus system is adopted
as the test-bed for the proposed MSCF mitigation strategy.
The maximum stage number is set to 3. It contains 137
buses and 177 lines (parallel lines included), 19 generators,
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and 91 loads. The system topology is shown in Figure 2,
where the red dot stands for generators.

Figure 2. The topology of IEEE 118-bus power systems.

3.1. Shallow Neural Network

The architecture for the shallow neural network is that:
one input layer, one output player, and one hidden layer
with 10 neuron units. Its input is a 1-D vector with 753
(=137x4+177+28) elements; the output is the action in the
RL framework (i.e., the line flow limit, c.f. Section 3).

Since both the hidden-layer dimension and output-layer
dimension of the shallow network are one, the SARSA (On-
policy TD) method is employed. During the training, the
action is bounded by the range [0.80, 1.25].

3.2. Deep Neural Network
1) Feature engineering

To create an image-like input for the convolutional layer,
the length of the original input (753) is extended to 784 =
28 x28 by appending extra zeros.

2) Network structure Typically, a deeper network and more
layers might lead to over-fitting in practice. Thus, the net-
work structure used in this paper is shown in Figure 3.

3) The Q-learning (Off-policy TD) method is applied on it.
The output of the 2nd-last layer (dimension 1 x 10) will be
used in both € — greedy policy and greedy policy. The last-
layer output (dimension 1x 1) will be finally used to update
the O-network parameters. The candidate set of action is
[0.8,0.85,0.9,0.95, 1.0, 1.05, 1.1, 1.15, 1.20, 1.25] € R*".

3.3. Experiments and Results

For both networks, the maximum episode number is 10000,
the learning rate is 10™%, and the discount rate ~y is 0.7.
The learning performance is shown in Table 3. The plot
of moving average reward (window size = 1000) for deep
network case is shown in Figure 4. It can be observed that

32@7x7

16@14x14

8@28x28

1x1

Figure 3. The network structure used in Deep RL.

Table 3. Learning Performance.

PERFORMANCE SHALLOW DEEP
NETWORK NETWORK

Winning rate 78.00% 78.07%

Avg. reward 640.08 630.46

both RL and Deep RL have achieved satisfactory results in
terms of winning rates (i.e., lower cascading risks). In both
cases, the average return per episode is more than half of the
maximum possible value (i.e., 500 = 1000/2), which shows
a positive learning ability of the RL agent in mitigating
cascading failures.
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Figure 4. The learning performance by the DRL (10000 episodes)
(best viewed in color).

4. Conclusions

In this paper, a reinforcement learning-based mitigation
strategy for the Multi-Stage Cascading Failure problem is
proposed. The trained RL agent works effectively on the
IEEE 118-bus system under both shallow and deep archi-
tectures with an approximately 78% chance to avoid the
power grid collapse. Potential benefits of the proposed
idea in this paper include 1) enhanced resilience to extreme
weather events and 2) increased penetration level of renew-
able sources. Investigating the effects of hyper-parameters
(e.g., layer numbers, hidden neuron units, learning rate, re-
ward amount, discount factor) of the RL network on the
mitigation performance will be the next step.
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