

URBAN TREE SPECIES CLASSIFICATION USING AERIAL IMAGERY

JULY 2021

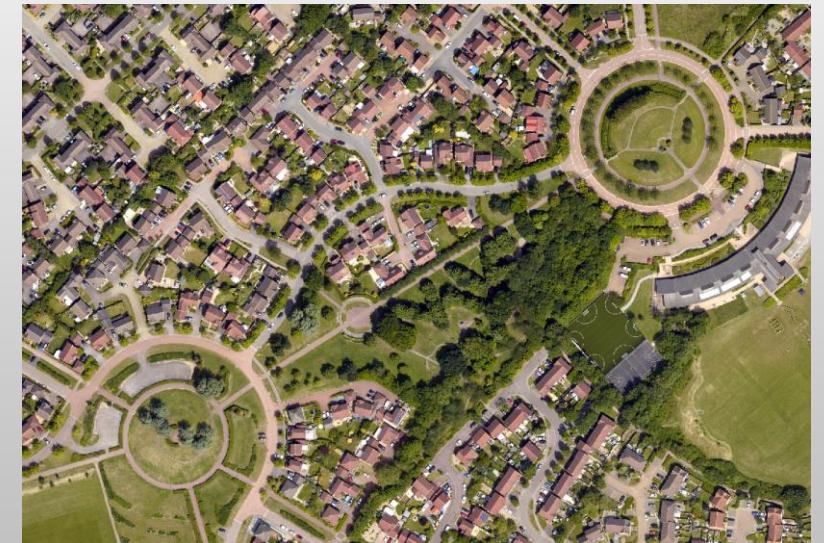
EMILY WATERS, MAHDI MAKTABDAR OGHAZ, LAKSHMI BABU SAHEER

FACULTY OF SCIENCE AND ENGINEERING, ANGLIA RUSKIN UNIVERSITY, CAMBRIDGE, UNITED KINGDOM

URBAN TREE SPECIES CLASSIFICATION USING AERIAL IMAGERY

- **BACKGROUND**
- Trees play a key role in climate change mitigation by capturing, storing and consequently reducing atmospheric CO₂ levels, the main adverse contributor to greenhouse gases and climate change (Aitken *et al.*, 2008).
- Urban trees can cut heating costs by reducing wind-speed and casting shade around the housing area which indirectly mitigates emission of greenhouse gases (Wolf, 2005).

URBAN TREE SPECIES CLASSIFICATION USING AERIAL IMAGERY



- **MOTIVATION**
- To leverage what trees can potentially offer, effective forest and urban tree management is essential.
- Effective forest and urban tree management requires detailed information about tree species, composition, health and geographical location of each tree in order to create a long-term sustainable plan for plantation and forestation sites, pruning schedules and mitigation of potential problems (Baeten & Bruelheide, 2018).

URBAN TREE SPECIES CLASSIFICATION USING AERIAL IMAGERY

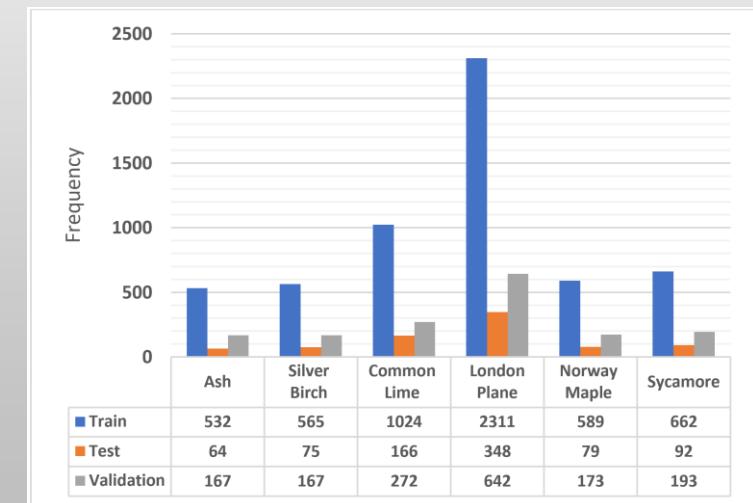
- **MOTIVATION**
- Effective forest and urban tree management also helps to monitor tree species diversity and track health and growth rate to creates a more robust ecosystem with better productivity and greater resilience to disease and pests (Gamfeldt *et al.*, 2013).

URBAN TREE SPECIES CLASSIFICATION USING AERIAL IMAGERY

- **AIM**
- This study is aims toward creating an accessible, reliable yet economically and practically viable tree management system to automatically detect, classify species and monitor forests and urban trees.

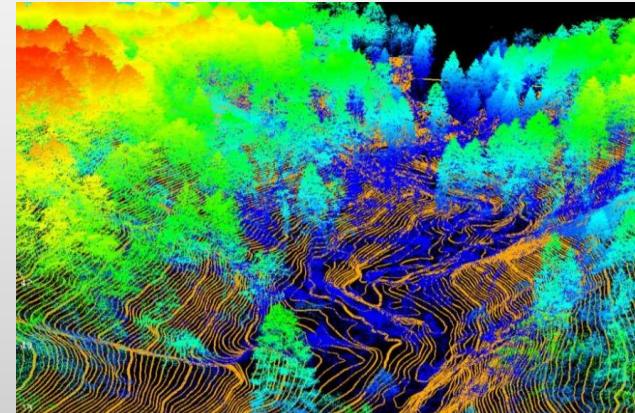
URBAN TREE SPECIES CLASSIFICATION USING AERIAL IMAGERY

- **DATASET**
- This study offers a dataset that uses Google Map's static API to source trees' aerial images and Camden tree inventory to supply tree's GPS location and species information.

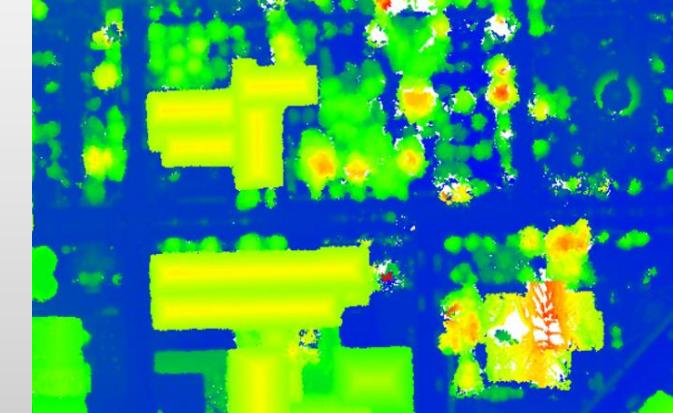

Trees in Camden
Inventory

Google Map
Images

Sample Images from
Dataset


Dataset Statistics

URBAN TREE SPECIES CLASSIFICATION USING AERIAL IMAGERY


- **LITERATURE REVIEW**

Ground Surveying

LiDAR technology

Hyperspectral imaging

- Laborious
- Time-consuming
- Expensive

URBAN TREE SPECIES CLASSIFICATION USING AERIAL IMAGERY

- **METHOD**
- This research investigates and evaluates three possible deep models including:
 - **VGG-16 (Pre-trained and Fine-tuned)**
 - **ResNet50 (Pre-trained and Fine-tuned)**
 - **Custom Deep Models (Training from scratch)**
- Parameters to Investigate:
 - **Dropout, Class Weights, Optimizer, Initializers**

URBAN TREE SPECIES CLASSIFICATION USING AERIAL IMAGERY

- **METHOD**
- **Custom Deep Models:**
- N is the number of Convolutional blocks, ranges between 1 and 6, with each block consisting of two convolutional layers (CONV) with a ReLU activation function followed by a Max-pooling layer.

INPUT →
[[CONV → RELU] * 2 → MAXPOOL] * N →
[FC → RELU] → FC,
where $N \in \{1, 2, 3, 4, 5, 6\}$

URBAN TREE SPECIES CLASSIFICATION USING AERIAL IMAGERY

• QUANTITATIVE RESULTS

Model	Loss	Accuracy (%)	Avg Class Recall (%)	Avg Class Precision (%)
VGG -16 (20% dropout - Adam)	1.1649	57.16	42.65	45.30
ResNet50 (20% dropout - Adam)	0.7300	59.92	54.07	52.46
x6 Conv block (Adamax He-normal)	0.8836	69.54	57.41	62.75
x6 Conv block (Adamax Truncated-normal)	0.9490	66.75	53.31	58.93
x5 Conv block (Adamax He-normal)	0.9254	67.11	55.74	58.97
x3 Conv block (5x5 Kernel - Adamax He-normal)	1.2031	54.98	39.17	44.19
x6 Conv block (Adamax Lecun - uniform)	0.9440	66.14	51.56	60.76
x6 Conv block (Adamax He-normal) 5-fold Cross Val	-NA-	60.29	46.57	56.18

URBAN TREE SPECIES CLASSIFICATION USING AERIAL IMAGERY

- **QUALITATIVE RESULTS**

Species	Correctly Classified Samples			Misclassified Samples		
Ash						
Silver Birch						
Common Lime						
London Plane						
Norway Maple						
Sycamore						

REFERENCES

- AITKEN, S. N., YEAMAN, S., HOLLIDAY, J. A., WANG, T., & CURTIS-MCLANE, S. (2008). ADAPTATION, MIGRATION OR EXTIRPATION: CLIMATE CHANGE OUTCOMES FOR TREE POPULATIONS. *EVOLUTIONARY APPLICATIONS*, 1(1), 95-111.
- BAETEN, L., BRUELHEIDE, H., VAN DER PLAS, F., KAMBACH, S., RATCLIFFE, S., JUCKER, T., ... & SCHERER-LORENZEN, M. (2019). IDENTIFYING THE TREE SPECIES COMPOSITIONS THAT MAXIMIZE ECOSYSTEM FUNCTIONING IN EUROPEAN FORESTS. *JOURNAL OF APPLIED ECOLOGY*, 56(3), 733-744.
- WOLF, K. L. (2005). BUSINESS DISTRICT STREETSCAPES, TREES, AND CONSUMER RESPONSE. *JOURNAL OF FORESTRY*, 103(8), 396-400.
- GAMFELDT, L., SNÄLL, T., BAGCHI, R., JONSSON, M., GUSTAFSSON, L., KJELLANDER, P., ... & BENGTSSON, J. (2013). HIGHER LEVELS OF MULTIPLE ECOSYSTEM SERVICES ARE FOUND IN FORESTS WITH MORE TREE SPECIES. *NATURE COMMUNICATIONS*, 4(1), 1-8.

THANK YOU