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Abstract

Urban trees help regulate temperature, reduce en-
ergy consumption, improve urban air quality, re-
duce wind speeds, and mitigating the urban heat
island effect. Urban trees also play a key role in
climate change mitigation and global warming by
capturing and storing atmospheric carbon-dioxide
which is the largest contributor to greenhouse
gases. Automated tree detection and species clas-
sification using aerial imagery can be a powerful
tool for sustainable forest and urban tree manage-
ment. Hence, This study first offers a pipeline for
generating labelled dataset of urban trees using
Google Map’s aerial images and then investigates
how state of the art deep Convolutional Neural
Network models such as VGG and ResNet han-
dle the classification problem of urban tree aerial
images under different parameters. Experimental
results show our best model achieves an average
accuracy of 60% over 6 tree species.

1. Introduction

Trees are well recognised for their importance to the planet
and human life. Environmentally, trees slow surface runoff
from rainfall, reducing flood risk, water pollution and soil
erosion (Chandler et al., 2017). They improve overall air
quality by absorbing particulate matter, create a cooling
effect, and mitigating the heat island effect in urban ar-
eas (Manickathan et al., 2017). A study by (Bastin et al.,
2019) shows forestation is a possible strategy for mitigat-
ing climate change. Trees capture and store atmospheric
carbon-dioxide and lock it up for centuries. Trees play a key
role in climate change mitigation by capturing, storing and
consequently reducing atmospheric CO2 levels, the main
adverse contributor to greenhouse gases and climate change.
Studies show, urban trees can cut heating costs by reduc-
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ing wind-speed and casting shade around the housing area
which indirectly mitigates emission of greenhouse gases
(Wolf, 2005). To leverage this potential, effective forest and
urban tree management is essential. This requires detailed
information about tree species, composition, health and geo-
graphical location of each tree in order to create a long term
sustainable plan for plantation and forestation sites, pruning
schedules and mitigation of potential problems (Baeten &
Bruelheide, 2018). It also helps to monitor tree species di-
versity and track health and growth rate to creates a more
robust ecosystem with better productivity and greater re-
silience to disease and pests (Gamfeldt & Snall, 2013; Rust,
2016). Such management system demands for an accessible,
reliable yet economically and practically viable platform to
automatically detect, classify and monitor forests and urban
trees. Historically, this has been carried out by experts and
volunteers visiting trees on the ground but this is a laborious,
time-consuming and expensive approach. Alternatively Li-
DAR technology, used to estimate the number of trees in an
area (Wilkes et al., 2018) and categorise their species (Kim
et al., 2008), paved the way to automated urban tree and
forest management. However, LiDAR surveying is a costly
process mainly due to the speciality equipment and skilled
human resource required to collect and interpret it (Rezatec,
2020). Hyperspectral imaging and remote sensing satel-
lites images have advanced significantly over the last couple
of decades and are now able to produce high-resolution
images which facilitates tree detection and species classifi-
cation (Fricker et al., 2019; Dalponte et al., 2014; Maschler
et al., 2018; Clark et al., 2005). There are a limited num-
ber of studies looking into the detection classification of
trees using RGB aerial images. RGB aerial image survey-
ing can be as costly as other aforementioned approaches
however availability of mapping service such as Google
Maps and Bing Maps can significantly reduce the cost of
surveying and data collection. Studies like (Wegner et al.,
2020; Nezami et al., 2020) utilized images from these plat-
forms paired with Convolutional Neural Network (CNN)
to create a fully automated yet accurate tree detection and
classification model which is pertinent to effective forest
and urban tree management.

Having said that, the purpose of this study is to first generate
a labelled dataset of urban trees using Google Map’s RGB
aerial images paired with existing tree inventories to supply
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GPS coordinates and species information. This study uses
the Camden tree inventory (Coucil, 2021) to acquire GPS
coordinates and species details. This study also aims to
build a supervised model capable to detect and classify tree
species accurately. Several state of the art pre-trained CNNs
models including VGG and ResNet variants along with
some custom models have been investigated, compared and
analysed.

2. Dataset Generation

The proposed dataset generator pipeline uses Google Map’s
static API to source trees’ aerial images and Camden tree
inventory (Coucil, 2021) to supply tree’s GPS location and
species information. Camden tree inventory contains over
23,000 GPS locations (Latitude and Longitude) of up to
date (over 99.9% of records dated 2016 or later) Council
owned trees on highways and in parks and open spaces in
London Borough of Camden. Cleaning process performed
by removing entries with missing locations, vacant plots
or unknown species. Each data point contains tree species,
height, spread, diameter at breast height (DBH), and matu-
rity. An automated process, goes through all entries in the
Camden inventory and downloads aerial image from Google
Map’s static API. The latitude and longitude co-ordinates of
each tree were used as the centre point for each aerial image
of 200x200 and zoom level of 20. While Camden tree inven-
tory consists of hundreds of different tree species, this study
only investigates top 6 species with the highest frequencies
including Ash, Silver Birch , Common Lime, London Plane,
Norway Maple and Sycamore. The data is split into subsets
with 70% for training, 20% for validation and 10% reserved
for testing. Images were labelled and categorized based on
their species and then organized into train, test and validate
sub-sets. The proportional representation of each species is
preserved across the subsets so that any class imbalance is
retained at each stage. As it can be observed in the Figure 1,
the number of entries in the training set is fairly limited for
an effective train of a deep convolutional model. Hence, this
study employed image augmentation technique (Rotation,
width and height shift, horizontal flip, zoom and brightness)
to over sample and expand the training set with new, plau-
sible examples as shown in the Figure 2 (Krizhevsky et al.,
2017).

3. CNN for Tree Species Classification

This research investigates and evaluates 3 possibilities in-
cluding VGG-16, ResNet50 and a group of custom deep
models to find an optimal CNN model for tree species classi-
fication. The VGG-16 (Simonyan & Zisserman, 2014) was
the chosen model in similar tree species classification stud-
ies by Branson, et al. (Branson et al., 2018) and Lang (Lang,
2020). As per these studies, the VGG-16 network was pre-

2500

2000
1500
1000
‘LLLbLL
L
Ash

Frequency

Silver Common London Norway

S
Birch Lime Plane Maple ycamore

H Train 532 565 1024 2311 589 662
HTest 64 75 166 348 79 92
Validation 167 167 272 642 173 193

Figure 1. Training, validation and testing sets counts across top 6
species in Camden dataset
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Figure 2. Example of the augmentation applied to images in the
training data subset

trained with ImageNet dataset (Russakovsky et al., 2015)
and then being fine-tuned and optimized on our dataset of
tree aerial images. We paired VGG-16 model with Adam
optimiser which besides being computationally efficient
was also used in similar studies like Lang (Lang, 2020).
The parameters to be varied are dropout and class weights.
Class weights applied to compensate for imbalance class
sizes. All the models considered in this study are trained
and tested based on the training, validation and testing sets
shown in the Figure 1. This study used categorical cross-
entropy loss function across all models in this study while
optimiser choice varied to see which has the greatest impact
on model performance. The maximum number of training
epochs is set to 100. During training, the model with the
smallest loss is saved and used for comparison with other
models. To reinforce the evaluation process, the top 5 mod-
els with the smallest loss and higher accuracy have further
evaluated using 5-fold cross validation to obtain more reli-
able results. This study also investigates the performance of
pre-trained ResNet50 model for tree species classification
using aerial images. Many similar studies including (Nate-
san et al., 2019; Cao & Zhang, 2020) used this model for
similar purposes. Deep structure of Resnet50 facilitates
modeling of complex features while skip connections avoid
issues like vanishing gradients.ResNet50 has been paired
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with Adam optimizer to achieve efficient training and timely
convergence. Various dropout and class weight ratios have
been examined and optimized during the training process.
In addition to aforementioned pre-trained models, this study
investigates a range of Custom CNNs models to identify
possibility of achieving accurate tree species classification
using a less complex model. The template for construction
of these custom models is illustrated in equation 1.

INPUT —

[CONV — RELU]*2 - MAXPOOL] x N — W
[FC — RELU] — FC,

whereN € {1,2,3,4,5,6}

where N is the number of Convolutional blocks, ranges
between 1 and 6, with each block consisting of two Con-
volutional layers (CONV) with a ReLU activation function
followed by a Maxpooling layer. The size of the kernel and
choice of kernel initialiser within the CONV layers are to
be varied between models. Dropout is added after each Con-
volutional block and after the penultimate fully connected
(FC) layer. Optimiser choice varied to identify its impact on
model performance.

4. Results and Discussion

The training process is conducted using the 6 tree species
(Ash, Silver Birch , Common Lime, London Plane, Norway
Maple and Sycamore) with the largest number of samples.
The VGG-16, ResNet50 and a range of Custom CNNs have
been trained with a combination of different parameters
including dropout ratio, optimiser, class balanced weight
to identify the top performer model. A further model re-
evaluation using 5-fold stratified cross validation helped to
obtain more reliable accuracy figures.

The VGG-16 model is trained with various dropout and class
weights values. The performance measures obtained by the
VGG-16 model are presented in Table 1. The VGG-16 base
model achieves an accuracy of 56.55%, only outperformed
by the VGG-16 model with 20% dropout that increases the
score by 0.61%. The accuracy differences for the VGG-
16 models with or without dropout appear to be marginal,
however the precision gains almost 5% for the model with
20% dropout. Note that the class balanced weight model
under-performs other models with a considerable margin.
Similar to VGG-16, ResNet50 model is trained with var-
ious dropout and class weights values. The performance
measures obtained by the ResNet50 model are recorded in
Table 2. The standard ResNet50 model managed to achieve
accuracy of 59.03% which is already higher than any figure
achieved by the VGG-16 model. Adding a 20% dropout,
marginally raised ResNet50 accuracy to 59.92%. Moreover,

Table 1. Comparison of results for the VGG-16 variants
Ave Class  Ave Class

Model Loss Accu (%) Recall (%) Precision (%) No Epochs
zls?aﬁ;iif " 11934 5655 4223 40.94 68
(\gign]cée aW) 1.7900 42.23 16.67 7.04 13
2/130/00 ;f’opom) 1.1914 55.83 41.80 40.30 49
VGG-16 1.1649  57.16 42.65 45.30 88

(20% dropout)

Table 2. Comparison of results for the ResNet50 variants
Ave Class  Ave Class

Model Loss  Accu (%) pecall (%) Precision (%) \© EPochs
gﬁ‘jﬁg 086 5903 5113 49.37 43
g;gﬁig w 103 896 5066 48.82 41
Eeggiffpom) 088 59.14 51.24 49.44 46
E%S;‘ﬁfgpom) 073 5992 5407 52.46 62

Average Class Precision raised by almost 3% for the model
with 20% dropout. Other models including Balanced class
weights and 10% dropout perform more or less the same as
the standard ResNet50 model.

Apart from pre-trained VGG-16 and ResNet50, we have
trained and evaluated a range of Custom CNNs models to
identify possibility of achieving accurate tree species clas-
sification using a less complex model. All custom models
are constructed as per the formula in equation 1. The base-
line custom model has one convolutional block with 3x3
kernels, ”He uniform” initialiser and SGD optimiser. This
model is then compared with a few other custom models
which mainly differ by having 2 to 6 convolutional blocks,
different dropout ratio, kernel size, optimizer and initialiser.
A detailed summary of notable results are presented in the
Table 3. The choice of optimiser was limited to what Tensor-
flow library offers. We have explored different optimisers
including Adadelta, Adagrad, Adam, Adamax, Ftrl, Nadam,
RMSprop and SGD. Experiment results shows the Adamax
optimiser consistently outperformed other optimisers in this
comparison. Similarly, the initialisers are taken from the
Tensorflow offerings including constant, Glorot normal, Glo-
rot uniform, He normal, He uniform, Lecun normal, Lecun
uniform and random normal. Results shows “He normal”
marginally outperforms other initialisers in this comparison.
According to the Table 3, The top performing model has 6
convolutional blocks paired with the “He normal” kernel
initialiser and is optimised using Adamax — a variant of the
Adam algorithm. This model achieves accuracy of 69.5%,
recall of 57.4% and precision of 62.8%. The top performing
model re-evaluate using 5-fold stratified cross validation
which led to a considerable drop across majority of the met-
rics. Cross validation Result can be observed at the bottom
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Table 3. Comparison of results for custom CNN models
Ave Class  Ave Class

Model Loss Accu (%) Recall (%)  Precision (%) No Epochs
x1 Conv block 12495 52.79 35.99 38.37 44
(Baseline)

x2 Conv block 1.1929 5595 38.53 40.55 62
x3 Conv block 11219 58.50 4281 54.06 57
x3 Conv block

(20% dropout) 12326 5498 40.12 4227 48
x3 Conv block

(30% dropout) 12604  51.46 3349 36.33 67
x4 Conv block 1.1644  58.13 4281 45.54 35
X5 Conv block 10752 62.37 49.37 52.89 54
x3 Conv block

(x5 Kocnc 12031 54.98 39.17 44.19 28
x3 Conv block 10072 65.53 4938 52.89 49
(Adam)

x3 Conv block

(Glomat uniform) 12121 5558 40.73 45,61 97
X6 Conv block 0.8836  69.54 57.41 62.75 58
(adamax he_normal)

X6 Conv block 09299  69.17 58.00 62.54 69
(adamax lecun_normal)

x5 Conv block 0.9088  69.17 57.16 61.67 75
(adamax glorot_normal)

x5 Conv block 09418 6833 5543 61.75 69
(adamax truncated_normal)

X6 Conv block 09228 67.72 55.10 56.82 46
(adamax he_uniform)

x5 Conv block 09254 67.11 55.74 58.97 55
(adamax he_normal)

X6 Conv block 0.9490  66.75 5331 58.93 85
(adamax truncated_normal)

X6 Conv block 0.9440  66.14 51.56 60.76 61
(adamax lecun_uniform)

x5 Conv block 09882  66.14 51.39 59.57 59
(nadam he_normal)

x6 Conv block

(adagrad he aniform) 09633  65.53 50.37 58.22 70
x6 Conv block

(adamax he_normal) -NA- 60.29 46.57 56.18 100

5-fold Cross Val

row of the Table 3. Qualitative results of the top model can
be found in the Appendix 1.

5. Discussion

The VGG-16 network (with up to 20% dropout) can identify
tree species accurately 56% of the time. The literature indi-
cated that the VGG-16 architecture would generalise well
to new classification problems and benefit from being pre-
loaded with ImageNet weights. However, our custom CNN
models with 3 or more convolutional blocks, consistently
outperformed the VGG-16 variants that had been trained.
The ResNet50 performed slightly better than the VGG-16
however its performance was inferior to our custom made
models. This was a surprising result, perhaps indicating
that VGG-16 and ResNet50 were over complex for the task
which negatively impacted generalization. The top perform-
ing custom CNN model consists of 6 convolutional blocks
paired with the Adamax optimiser and He Normal kernel
initialiser, which achieved 69% accuracy on the test set and
average 60.29 accuracy on 5-fold stratified cross validation.
The Adamax optimiser was a common parameter across the
most successful 8 models. Datasets with many outliers or
which are noisy in terms of gradient updates can benefit
from Adamax over Adam (Kingma & Ba, 2014). Adamax
is a sparse implementation of Adam (Kingma & Ba, 2014)

and in this case was shown to be superior. The VGG-16
and ResNet50 models were only optimised using Adam, so
future experiments could explore the effects of using dif-
ferent optimisers here too. Other known architectures such
as AlexNet could be trialled in addition to VGG-16 and
ResNet50. More convolutional layers increase the number
of parameters and have the effect of allowing the model to
extract more features — up to a point — after which overfit-
ting tends to occur. This could be a reason for the VGG-16
or ResNet50 networks failing to achieve superior results.
Amongst the top models, a pattern emerged to identify that
kernel initialisers with normal distributions tended to out-
perform uniform distributions but its impact was almost
negligible. The strategy for constructing a custom CNN
could be extended to explore other possibilities such as alter-
ing convolutional blocks to contain 3 convolutional layers
instead of 2, varying other parameters such as batch size and
learning rate. We realized 5-fold stratified cross validation
led to a considerable drop across majority of the metrics.
This implies that our dataset is not large and homogeneous
enough to generate reliable results in hold-out test method.
Another reason for the disparity could be that the 5-fold
validation process uses 20% of the data for each model to
be tested on, whereas 10% is retained for the hold-out test
method.

Further investigation shows the top performer model strug-
gles at identifying some tree species such as Ash. We believe
this is mainly due to limited number of training samples.
This could be mitigated by setting up a hierarchical tree
species classification model where a top-level model classi-
fies tree’s species family while a separate sub-model will be
trained to distinguish between each species of a family. Al-
ternatively, ensemble modelling could be employed — where
several models are trained on the data, and their predictions
are aggregated to produce a final prediction.

6. Conclusion

This work examined the possibility of generating a labelled
tree species dataset using Google Maps aerial images and
publicly available tree inventories to supply GPS coordi-
nates and tree species information. Moreover, this study
offered a deep convolutional neural network model capa-
ble to successfully classify tree species using the proposed
dataset. The work involved looking at both transfer learning
approach using the VGG-16 and ResNet networks and con-
structing a series of custom CNN models. The top performer
model in this research managed to classify up to 6 differ-
ent tree species with over 60% average accuracy. Future
work such as investigating other pre-trained models under
different parameters could likely to improve the metrics.
Furthermore, genetic algorithm technique could be adopted
to optimise and evolve model parameters and identify the
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best performing architecture.
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7. Appendices
Appendix 1
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Qualitative results generated by the top performer model with the 6 convolutional block, Adamax optimiser and He normal
kernel initialiser



