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Abstract

Birds are shifting migratory routes and timing in
response to climate change, but modeling migra-
tion to better understand these changes is difficult.
Some recent work leverages fluid dynamics mod-
els, but this requires individual flight speed and
directional data which may not be readily avail-
able. We developed an alternate modeling method
which only requires population level positional
data and use it to model migration routes of the
American Woodcock (Scolopax minor). We use
our model to sample simulated bird trajectories
and compare them to real trajectories in order to
evaluate the model.

1. Introduction

Bird migration is an important ecological phenomenon. Mi-
grating birds act as long distance dispersal agents for many
other species of plants, invertebrates, and microbes and
serve many other ecological functions (Viana et al., 2016).
In recent decades, the migratory timing of migratory birds
has shifted on a continental scale and climate change is
an important factor in this change (Horton et al., 2020;
Youngflesh et al., 2021). In order to fully understand these
changes, we need effective methods for modeling bird mi-
gration.

There are various sources of data that can be used to model
migration. Individual bird tracks are a useful source of data
but they are not generally available in large quantities and
they are expensive to collect. Weather radar can be pro-
cessed in order to infer bird density, flight speed, and flight
direction, and this kind of data has been used recently in a
fluid dynamics model (Nussbaumer et al., 2021). However,
processing the radar data can be difficult and it does not
identify the species of bird. One of the largest sources of
data is eBird, which is a citizen science project that aggre-
gates the observations of recreational birders (Sullivan et al.,
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Figure 1. Abundance map from eBird Project for the American
Woodcock

2009). This data is readily available on a species level but it
does not include flight speed or direction, so the dynamics
approaches are not applicable to this data. Our method uses
the abundance maps generated by the eBird project to infer
a distribution of bird trajectories.

2. Data

We use weekly modeled species abundance estimated de-
rived from eBird data (Fink et al., 2020) to infer population
movement over time. The abundance model takes into ac-
count sources of bias in the citizen science data to produce a
weekly estimate of abundance for many bird species. Abun-
dance refers to the number of birds of a species that an
observer will see at a location within a given amount of
time. An example of one of these weekly abundance maps
for the American Woodcock (Scolopax minor) can be seen
in Figure 1.

We treat a bird’s position during these weekly snapshots as
discrete random variables X7, ..., X7 over the grid cells in
the map. In order to use the abundance model as a “ground
truth” distribution, we aggregate the abundance to a coarser
grid and normalize it so that is sums to one. We will refer to
these “ground truth” distributions as p*(X;) for the weeks
t e 1,..,T).



3. Method

We present a fully differentiable parameterization of the
single time-step and transition marginals of an arbitrary
Markov chain, and develop a loss function of those
marginals to infer the flow of birds through different spatial
locations.

3.1. Model

In order to simplify the migration model, we will assume
that a bird’s trajectory is Markovian. This means that the
bird’s position one week only depends on the position the
week before. While this is not a perfect assumption, pa-
rameterizing the full distribution p(X7, ..., X7 ) without this
assumption would require exponentially many parameters
in T'. So, we parameterize the model as follows:

Initial Parameters: Z(") € R™,

Transition Parameters: Z(HtT1) ¢ R*7

Here, n is the number of cells in the map. In order to go
from unconstrained parameters to a distribution we use the
softmax function.
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This ensures the entries are non-negative and sum to one.
Applying it to our parameters gives us the following distri-
butions:

pz(X1 = i) = a(ZzV),,
pz(Xep1 = j|1X; = i) = o(25),.

Note that (thtﬂ) refers to the i’th row of the matrix
Z®HD Tt will be convenient to represent these distri-
butions as vectors and matrices:

we(i) = pz(Xy = 1),
Tii11(i,7) = pz(Xe1 = jIXe =1).
From these distributions, we can infer the weekly marginal

distributions and the joint distributions over subsequent
weeks from the model.
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3.2. Optimization

Simply matching the ground truth distribution is an under-
specified problem. There are many transition parameters

which could match the ground truth distribution and some
of them do not correspond to realistic bird behavior. So,
to learn this model we will minimize an objective with
three components: the mean squared error S between the
infered marginal distributions and the ground truth marginal
distributions, a distance penalty 53, and the entropy H.

Minimizing the mean squared error between the ground
truth distributions p; and the model predictions p; ensures
that the model reflects the abundance data from eBird.
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We need a term to reflect the fact that birds avoid making
unnecessary large-scale movements. So, we encode the
distance between two cells on the map in the distance matrix
D and penalize birds for the distance they travel. We refer
to this as the distance penalty.
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We also encourage the model to avoid solutions which are
overly restrictive. We do this by taking into account the

entropy of the predicted joint distribution pz (X1, ..., X7).
T2
M= (H(Xi, Xi11) — H(Xi11))
t=1

+H(Xr_1, X7)

n
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Finally, we combine these components into one loss term £
L(Z)=0,S+ 0,8 —0H

Here the weights 6 are hyper-parameters which we will
choose. Note that the entropy terms is subtracted because
we minimize the loss and we want to maximize entropy. We
minimize this objective by using gradient descent, specif-
ically the Adam optimizer (Kingma & Ba, 2014). The
gradients are calculated using automatic differentiation.

3.3. Connection to Collective Graphical Models

Our model is inspired by collective graphical models
(CGMs) (Sheldon & Dietterich, 2011) and solves a similar
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Figure 2. Learned Initial Distribution

optimization problem but is simplified to not attempt a fully
generative model. It is instead oriented toward: (1) practi-
cal gradient descent optimization on modern deep learning
frameworks, (2) effective modeling of the domain applica-
tion. Our ability to model bird trajectories is substantially
more mature than prior applications of CGMs.

4. Experiments

We applied our model to the abundance data for the Ameri-
can Woodcock. We chose this species because Moore et al.
(2021) recently released individual American Woodcock
tracks via the Movebank data repository (Kranstauber et al.,
2011). The availability of individual tracks simplifies the
process of evaluating the model. The model was imple-
mented using the JAX package for automatic differentiation
and the Optax package for optimization (Bradbury et al.,
2018; Hessel et al., 2020).

After training until convergence, the model had a final loss
value of about 1.611. We can see the learned distribution
for the first week in Figure 2. However, looking at the
weekly distributions cannot indicate how well the model
has inferred movement. We can evaluate the quality of the
inferred movement by sampling trajectories.

4.1. Sampling

Once the parameters are learned, we can sample a trajec-
tory xy, ..., x7 from the model by sampling from the initial
distribution and each of the conditional distributions.

z1 ~ pz(X1),
Ty ~ pz(Xo| X1 = 1),

xp ~ pz(Xr| Xr_1 = xr_1).

An example sample drawn from the model can be seen in
Figure 3. Note that some weeks the bird will not move,
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Figure 3. American Woodcock Trajectory Generated by the Model

the length of the bird’s stay in one particular location is
indicated by the size of the bubble.

The large scale trends in the sampled trajectories can be seen
in Figure 4. Here, we aggregated 400 sampled trajectories
and split them across the spring and fall seasons. This
shows that the model has learned trajectories which follow
the proper seasonal patterns and proper positioning for this
species.

4.2. Comparing to Real Tracks

The fact that the predicted distribution has the proper posi-
tion according to the ground truth distribution and the proper
seasonal direction is encouraging, but it does not show that
the sampled trajectories will be similar to real trajectories.
In order to show that, we need to look at true trajectories.

The positions from the tracks from Moore et al. (2021)
were not sampled once a week, so we had to line up the
timescale with our model. Any birds which were tracked
for more than one year were split into several trajectories,
one for every year. For each trajectory we recorded the start
week t; as the week of the year when the first position was
recorded and the position /;, as the map cell corresponding
to the coordinates of the bird at that time. Then, for each
subsequent week t € [to, ..., tr] we setl; to be the grid cell
corresponding to the latest coordinates which were observed
that week. Some of the observed trajectories only lasted a
few weeks and some of them lasted an entire year.

In order to compare the true trajectories to the sampled tra-
jectories we sampled trajectories starting at the same time
and place as a real trajectory. To do this we set the sampled
trajectories initial position x;, = [;, and then sequentially
sampled x; ~ pz(X¢|Xi—1 = x¢—1) fort € [to,...,tF].
We plotted some of the real trajectories along with 50 sam-
pled tracks, this can be seen in Figure 5.
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Figure 4. Aggregated American Woodcock Trajectories Generated by the Model
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Figure 5. Real American Woodcocks Compared to Model Samples - True Track Outlined in Red

5. Discussion

Based on the comparison of the sampled trajectories to
the real trajectories, it seems that the model does a good
job of positional forecasting. The sampled trajectories and
the real trajectories cover a similar distance and travel in a
similar direction. Another positive indicator is that the real
trajectories seem to lie within the “spread” of the samples.
This shows that the model is not learning trajectories which
are too restrictive.

However, there are some ways in which the model’s sampled
trajectories differ from the real ones. The model’s trajecto-
ries tend to move more often than true trajectories which
tend to consist of just a few large movements. Also, there
is a tendency, because of the Markovian assumption, for
some of the year long sampled trajectories to start and end
in different locations whereas the true trajectories almost

always end very close to where they start.

Our method can be a useful new tool for scientists trying to
investigate changes in the migration patterns of individual
species. By using the learned distribution from our model it
may be possible to infer behavioral changes with the use of
fewer real tracks.
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