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1. Background

2[1] Tamrakar, Ujjwol, et al. "Virtual inertia: Current trends and future directions." Applied Sciences 7.7 (2017): 654.



1. Background

- Frequency deviation 

reflects the demand –

supply mismatch

- In frequency control 

problem, we adjust the 

active power from 

generators to reduce 

the frequency 

deviation. 
Increased renewable 

energy sources

3[2] https://www.mitsubishielectric.com/eig/energysystems/ictpowersystem/solutions/Large-capacityStorageBattery.html



1. Background
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Linear droop control

[3] Denholm, Paul, et al. Inertia and the power grid: A guide without the spin. National Renewable Energy Laboratory, 2020.

Synchronous generators follow negative linear feedback from frequency deviation 
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1. Background - Challenge
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Linear control may not be optimal
✓ Stabilizing

✓ Frequency deviation

✓ Control cost
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Inverter-based resources can implement almost arbitrary control law



1. Background – Our approach

Reinforcement learning (RL) for optimal 

frequency control

- Parameterize the controllers with neural 

network and RL is used to train them

- Obtain structure property of stabilizing 

controller using Lyapunov function

- RNN-based framework for efficient 

training
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2. Problem Formulation - Model

Angle Frequency State Variables

The dynamics of the power system are represented by the swing equation

Inertia 

constant

The susceptance 

of the line (i, j)

Static controller that change active 

power for primary frequency regulation
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Net power 

injection

Damping 

coefficient



2. Problem Formulation – Optimization Objective
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2. Problem Formulation – Hard Constraint on Stability

(b) Dynamics of 𝜔(left) and 𝛿 (right) for RNN-Wo-Lyapunov

(c) Dynamics of 𝜔(left) and 𝛿 (right) for RNN-Lyapunov 9

(a) Average batch loss along episodes

- Necessity to consider Stability



3. Lyapunov Approach for a Stabilizing Controller
A local Lyapunov function 𝑉(𝛿, 𝜔) for the dynamic system is 

The total derivative of the Lyapunov function with respect to t is
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3. Lyapunov Approach for a Stabilizing Controller

According to Lyapunov stability theory, we design the neural networks to have 

the following structures such that  the controller will be locally exponentially 

stabilizing

1) 𝑢𝜃𝑖 𝜔𝑖 has the same sign as 𝜔𝑖

2) 𝑢𝜃𝑖 𝜔𝑖 is monotonically increasing

3) 𝑢𝑖 ≤ 𝑢𝜃𝑖 𝜔𝑖 ≤ 𝑢𝑖
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4. RNN for Efficient Training
Integrate state transition dynamics in recurrent neural network (RNN) 

- Define the cell states to be 𝛿𝑖 and 𝜔𝑖

- Operation of cell unit follows the swing equation
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Compared with the general reinforcement learning structure, the proposed RNN based 
structure reduces computational time by approximate 74.32%



5. Case study
Case studies are 
conducted on the IEEE 
New England 10-machine 
39-bus (NE39) power 
network

- Benchmark: Linear 
droop control with 
optimal linear 
coefficient

- The proposed 
approach learns a 
non-linear control law Control Action u obtained by different approaches
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5. Case study

- Start from the same 
initial states at t=0, 
loss of load at bus 2 at 
t=2s

- Compared with the 
linear droop control, 
RNN-Lyapunov achieve 
similar frequency 
deviation with much 
smaller control effort.

(a) Dynamics of 𝜔(left) and 𝑢 (right) for RNN-Lyapunov

(b) Dynamics of 𝜔(left) and 𝑢 (right) for linear droop control 14



Thank you!
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