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1. Background
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1. Background

Synchronous generators follow negative linear feedback from frequency deviation

Linear droop control
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a) Frequency drops and governor opens valve, increasing power [3] Freq uency

[3] Denholm, Paul, et al. Inertia and the power grid: A guide without the spin. National Renewable Energy Laboratory, 2020.




1. Background - Challenge

Inverter-based resources can implement almost arbitrary control law
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1. Background - Our approach
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2. Problem Formulation - Model

The dynamics of the power system are represented by the swing equation
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2. Problem Formulation - Optimization Objective
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2. Problem Formulation - Hard Constraint on Stability
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3. Lyapunov Approach for a Stabilizing Controller

A local Lyapunov functlon V((S w) for the dynamic system is
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3. Lyapunov Approach for a Stabilizing Controller

According to Lyapunov stability theory, we design the neural networks to have

the following structures such that the controller will be locally exponentially
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4. RNN for Efficient Training

Integrate state transition dynamics in recurrent neural network (RNN)

- Define the cell states to be §; and w;
- Operation of cell unit follows the swing equation
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Compared with the general reinforcement learning structure, the proposed RNN based
structure reduces computational time by approximate 74.32% 12




5. Case study
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