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Air pollution and the emission of GHGs are the main cause of
climate change. Anthropogenic GHG emissions from the
combustion of fossil fuels in industrial plants or vehicles are
harmful to the environment and contribute to global warming
trends. Besides the primary GHG, CO,, the burning of fossil
fuels also emits molecules like NO, and CO, which can be used
as proxies for the estimation of CO, emissions [Konovalov,
2016].

Continual data on air pollution concentrations
in the atmosphere are primarily collected with
two approaches:

* Networks of air quality stations on the
ground recording pollutant concentrations
at select locations

« Satellites with spectrometers measuring
atmospheric column densities of pollutants
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Air pollution measurements from ground stations provide frequent measurements but lack spatial
coverage. Satellites provide large spatial coverage but low spatial resolution and little information
about a pollutant’s vertical distribution.

Estimation of pollutant concentrations near the surface, where they originate, is a non-trivial task.

Column
densit

European Environment Agency
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In previous work, approaches like land-use-regression (LUR) and geostatistical
interpolation methods like kriging have been used to derive detailed information
about the spatial distribution of air-borne pollutants at the surface level. These
techniques are limited by the availability of a dense network of air quality stations
for interpolation, or large datasets of auxiliary variables such as population statistics
or road network data (see [Hoek, 2008] for a review).

This work utilizes temporal surface NO, measurements from 3000+ air
quality stations across Europe, averaged for the 2018-2020
timeframe. Additionally, multi-band remote sensing data from the ESA
Sentinel-2 satellite as well as tropospheric NO, column density values
from Sentinel-5P are collected at the locations of air quality stations.

By leveraging globally available remote sensing data and deep
learning in lieu of detailed, country specific input datasets, we strive to
enable the estimation of surface level air pollutants at high spatial
resolution for any location on Earth.

Sentinel-2  Sentinel-5P
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We present a supervised deep learning
approach for the prediction of surface NO2
concentrations from Sentinel-2 and Sentinel-5P
data.

Model

g ResNet-50

Sentinel-2

Features of the Sentinel-2 image are extracted
through a ResNet-50 [He, 2016], with input layer

adapted to the 13-band input data and % g
pretrained on a land-use-classification task on % 3 ConvNet
the BigEarthNet dataset [Sumbul, 2019]. § g
|
To account for the lower native resolution and < tg Evaluation
single band nature of Sentinel-5P data, this Sl LM:

input is separately processed through a small
CNN before fusing with the Sentinel-2 image
features.

The final prediction is produced by the “head”, a stack of 2 fully connected layers




- _
;E Universitit St.Gallen Expe rl m e ntS

We experiment with different combinations of input data sources and aggregation frequencies. The
best performance is obtained from the combination of Sentinel-2 and Sentinel-5P inputs and the
target aggregated across the entire timeframe of our dataset, reaching an average R2-score of
0.54 + 0.04 across 10 runs.

Interestingly, the model almost maintains this level of accuracy when predicting NO, concentrations
at vastly increased temporal frequency. For monthly predictions, an R2-score of 0.51 + 0.01 is
achieved. This is partly explained by the increased number of available training observations at
monthly frequency.

DATA TIME N-OBs. PT R2 R2-T10 MAE MAE-T10 MSE MSE-T10
SEN.-2 2018-20 3.2K X  0.25x0.05 0.28 8.06+0.49 131 105111029 91.72
SEN.-2 2018-20 3.2K v 0.45%0.03 0.49 6.62+0.17 6.23 77.03+3.64 65.81
SEN.-2,5P  2018-20 3.1K x  0.38+0.03 0.43 1.06£0:35 6.68 83.72+4.14 78.4
SEN.-2,5P  2018-20 3.1K v 0.54%0.04 0.59 5.921+0.44 5.42 62.521+5.47 56.28
SEN.-2,5P  QUART. 19.6K v 0.5240.05 0.57 6.24+0.22 5.98 73.1+£6.88 66.12
SEN.-2,5P MONTH. 59.6K v 0.51£0.01 033 6.54+0.15 6.31 78.961+4.2 73.74
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The heatmaps are produced from individual predictions for overlapping tiles of the top image and
corresponding Sentinel-5P data.
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NO, estimates
correspond well with
known differences in
surface NO,
concentrations
between built up and
natural areas.

Estimation model is
robust in different
geographic
environments across
Europe.
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Please see appendix for additional examples.
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Monthly average NO,
measurements from three
EEA air quality stations in 30-
Germany, France, and Italy
(dark colors) and monthly

NO, predictions based on | | f
our approach at the same . /’_/ \/
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nominal predictions.

e STA.DE DESNO059 a STA-FR31021 = STA.IT1914A
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We present a novel approach for the prediction of ambient NO, concentrations based on deep
learning, solely from remote sensing data.

 Accurate NO, estimates (MAE < 6ug/m3).
« Applicable at any location on Earth.

« Capable of modelling temporal patterns of surface
NO, concentration.

Artificial Intelligence linus.scheibenreif@unisg.ch
Machine Learning

" hsg.ai
'A Universitat St.Gallen Code
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Appendix
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