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Abstract

Air pollution is a major driver of climate change.
Anthropogenic emissions from the burning of fos-
sil fuels for transportation and power generation
emit large amounts of problematic air pollutants,
including Greenhouse Gases (GHGs). Despite
the importance of limiting GHG emissions to mit-
igate climate change, detailed information about
the spatial and temporal distribution of GHG and
other air pollutants is difficult to obtain. Exist-
ing models for surface-level air pollution rely on
extensive land-use datasets which are often lo-
cally restricted and temporally static. This work
proposes a deep learning approach for the pre-
diction of ambient air pollution that only relies
on remote sensing data that is globally available
and frequently updated. Combining optical satel-
lite imagery with satellite-based atmospheric col-
umn density air pollution measurements enables
the scaling of air pollution estimates (in this case
NO.) to high spatial resolution (up to ~10m) at
arbitrary locations and adds a temporal compo-
nent to these estimates. The proposed model per-
forms with high accuracy when evaluated against
air quality measurements from ground stations
(mean absolute error <6 z1g/m?). Our results en-
able the identification and temporal monitoring of
major sources of air pollution and GHGs.

1. Introduction

Air pollution and the emission of GHGs is the main cause
of climate change with annual global emission levels still
on the rise (Friedlingstein et al., 2019). In particular, an-
thropogenic GHG emissions from the combustion of fossil
fuels in industrial plants or for transportation are harmful
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Figure 1. Overview of the proposed air pollution prediction system.

to the environment and contribute to global warming trends
(Ledley et al., 1999). Besides the primary greenhouse gas,
COq, the burning of fossil fuels also emits molecules like
NOs and CO, which have been used as proxy for the esti-
mation of COy emissions (Berezin et al., 2013). Detailed
information about sources and distribution of air pollutants
within the atmosphere is of high relevance for a number
of applications with climate change impact, including the
compilation of emission inventories (Eggleston et al., 2006),
the design and implementation of pollution limits (Bollen &
Brink, 2014), and the quantification of large anthropogenic
emissions (Liu et al., 2020).

At present, continual data on air pollution concentrations in
the atmosphere are primarily collected through two different
approaches with distinct drawbacks. On the Earth’s surface,
networks of measurement stations record the concentration
of various chemicals at select locations (Guerreiro et al.,
2014). Such networks are commonly run by environmental
agencies and provide frequent measurements while often
lacking in spatial coverage. This drawback can be partly ad-
dressed by space-borne air pollution monitoring: satellites
equipped with spectrometers measure the abundance of se-
lect molecules in the form of atmospheric column densities
(Gupta et al., 2006). While their position in Earth’s orbit
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Figure 2. Exemplary NO3 predictions based on Sentinel-2 and Sentinel-5P input data. Top: RGB bands of the Sentinel-2 image, red dots
mark locations of air quality stations, red text indicates the average NO> concentration measured on the ground during the 2018-2020
timespan. Bottom: Predicted NO2 concentrations for the locations above (not seen during training) with predictions at the exact position
of air quality stations in red. The heatmaps are constructed from individual predictions for overlapping 120x 120 pixel tiles of the top
image and corresponding Sentinel-5P data, resulting in an effective spatial resolution of 100m. This approach is equally applicable to
locations without air quality stations, providing a means to map air pollution on the surface level to identify sources of air pollution and

GHG emissions (see Fig. Al for more examples).

allows satellites to frequently map most locations on Earth,
remote sensing spectrometers currently only provide spatial
resolutions in the kilometer range and with little information
about the pollutant’s vertical distribution. Specifically, the
estimation of concentrations near the surface, where these
pollutants originate from, is a non-trivial task (Scheibenreif
et al., 2021). One of the primary anthropogenic air pollu-
tants is Nitrogen Dioxide (NOs). Elevated levels of NOg
harm the vegetation, contribute to acid rain, and act as a
precursor of potent GHGs like Ozone (Montzka et al., 2011).
Additionally, NO, is jointly emitted with CO, during the
combustion of fossil fuels at high temperatures, making it
a suitable proxy to identify CO2 emission sources (Kono-
valov et al., 2016; Goldberg et al., 2019). This work lever-
ages a large body of publicly available NO, concentration
measurements on the ground by the European Environment
Agency’s’ (EEA) network of air quality stations and satellite
measurements from the European Space Agency’s (ESA)
Copernicus program to investigate the distribution of air
pollutants through a deep learning approach. The results of
this work enable the identification of major sources of GHG
emissions and their temporal monitoring on a global scale.
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2. Background

Various prediction and interpolation techniques have been
used to derive detailed information about the spatial dis-
tribution of air-borne pollutants such as GHGs. Typically,
these models are based on point measurements from air
quality monitoring stations that are spatially limited to spe-
cific locations. Beyond interpolation with geostatistical
approaches like kriging (Janssen et al., 2008), land-use-
regression (LUR) is commonly applied to incorporate co-
variates such as population density or traffic data into the
models (see Hoek et al., 2008, for a review). LUR mod-
els often involve variable selection procedures to identify
predictive inputs over large sets of candidate variables, mak-
ing it difficult to scale to regions not covered by detailed
datasets, even if some air quality measurements are avail-
able. Building on existing work that incorporates satellite
measurements into LUR frameworks (Novotny et al., 2011),
we extend this approach to model air pollution at high spatial
resolution solely from satellite data. Our work is based on
NO,, concentration measurements by the EEA. We consider
NO,, as pollutant of interest due to its relevance as major
anthropogenic air pollutant and chemical properties that fa-
cilitate its detection from space with high accuracy (opposed
to GHGs like CO5). Additionally, it is co-emitted with COq
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Table 1. Performance metrics for NO2 estimation with various model architectures and datasets on unseen observations, averaged over 10

training runs with varying random seeds (PT: Pre-trained model, *-T10: Performance of top model out of 10 training runs).

DATA TIME N-OBs. PT R2 R2-T10 MAE MAE-T10 MSE MSE-T10
SEN.-2 2018-20 3.2K x  0.25+0.05 0.28 8.06+0.49 7.31 105.7+10.29 91.72
SEN.-2 2018-20 3.2K V' 0.45+0.03 0.49 6.62+0.17 6.23 77.031£3.64 65.81
SEN.-2,5P  2018-20 3.1k x  0.38£0.03 0.43 7.06+0.35 6.68 83.72+4.14 78.4
SEN.-2,5P  2018-20 3.1K v 0.54£0.04 0.59 5.92+0.44 5.42 62.52+5.47 56.28
SEN.-2,5P  QUART. 19.6x v 0.5240.05 0.57 6.24+0.22 5.98 73.1+£6.88 66.12
SEN.-2,5P  MONTH.  59.6K v 0.51£0.01 0.53 6.54+0.15 6.31 78.96+4.2 73.74

in the burning of fossil fuels, which makes it possible to
constrain CO, emissions from NO, measurements (Berezin
et al., 2013). To facilitate the identification of air pollutant
sources, which are commonly located on the ground, we
model surface-level concentrations (rather than e.g. atmo-
spheric column densities). The EEA network of air quality
stations provides frequent (mostly hourly) measurements of
NO concentrations at more than 3,000 locations in Europe.
Additionally, remote sensing data from ESA’s Sentinel-2
and Sentinel-5P satellites is utilized to model air quality.
Sentinel-2 is a constellation of two satellites carrying the
Multi Spectral Instrument, a spectrometer covering the visi-
ble, near-infrared and shortwave-infrared wavelengths with
imaging resolutions between 10 and 60 meters (Drusch et al.,
2012). Sentinel-2 data is widely used in applications like
land cover classification or crop monitoring (Helber et al.,
2019) but also for the monitoring of GHGs at locations
of interest (e.g., based on the presence of smoke plumes,
Mommert et al., 2020). In our work, globally available and
continually updated Sentinel-2 images replace conventional
LUR predictor variables such as street networks, population
density or vegetation information. The Sentinel-5P satellite
observes trace-gases and aerosols in the atmosphere through
differential optical absorption spectroscopy (Veefkind et al.,
2012). It provides daily global coverage for gases including
NOs, O3, CO or CHy with a spatial resolution of 5 x 3.5 km.
We utilize the NO, tropospheric column density product of
Sentinel-5P to model the temporal variation in surface NO,
levels.

3. Methods

This work approaches the estimation of air pollution as a
supervised computer vision problem. We collect a dataset
of harmonized remote sensing data from Sentinel-2 and
Sentinel-5P, spatially and temporally aligned with measure-
ments from air quality monitoring stations. The proposed
model is trained on pairs of remote sensing input and air
quality target values (see Fig. 1), which yields a system that
predicts air pollution levels solely from globally available

remote sensing data’.

3.1. Data Processing

We consider the 2018-2020 timespan, historically limited
by the start of the Sentinel-5P nominal mission. NO,
measurements by EEA air quality stations are filtered to
remove values with insufficient quality (validity or
verification value #1). Besides modelling the en-
tire 2018-2020 timespan, we also investigate the possibility
to estimate NOy concentrations at quarterly and monthly
frequencies. To that end, the mean of NOy measurements
for each frequency is used as prediction target. To build
the dataset, we downloaded Sentinel-2 Level-2A data (i.e.
corrected for atmospheric effects and enriched with cloud
masks) with low cloud-coverage at the locations of air qual-
ity stations, containing 12 different bands (band 10 is empty
in the case of Level-2A data). The images were then cropped
to 120x 120 pixel size (~1.2x 1.2 km) centered at the lo-
cation of interest, and all bands were upsampled to 10 m
resolution with bilinear upsampling. Additionally, we visu-
ally inspected the RGB bands of all images to ensure that no
clouds or artifacts are present. Similarly, Sentinel-5P data
over Europe was downloaded for the 2018-2020 timespan
(5449 Level-2 products) and mapped to a common rectangu-
lar grid of 0.05x%0.05 ° (~5x5 km) resolution after remov-
ing invalid measurements (ga_-value <75). The resulting
dataset was averaged at the different temporal frequencies
and 20x20 km regions at the locations of air quality stations
were extracted. To facilitate processing despite the coarse
resolution (~500x lower than Sentinel-2), we linearly inter-
polated the Sentinel-5P data to 10 m resolution and cropped
to 120x 120 pixel centered at the locations of interest.

3.2. Model Architecture

Our core model for NOs prediction from imaging data is
based on the ResNet-50 architecture (He et al., 2016) (see
Fig. 1). The input layer is modified to accommodate the 12-
band Sentinel-2 input data and the final layer is replaced by

2code available at github.com/HSG-AIML/
RemoteSensingNO2Estimation
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two dense layers with ReLU activation (named head) that
map the 2048-dimensional feature vector to a scalar value.
We employ transfer learning by pretraining the model on a
land-cover classification (LCC) task with the BigEarthNet
dataset (Sumbul et al., 2019). After pretraining, the final
classification layer is replaced by the head, i.e., only the
trained convolutional backbone of the ResNet is retained.
Intuitively, learned features that are informative for LCC
(e.g., distinguishing industrial areas from forests) will also
be useful when estimating emission profiles of different ar-
eas. To handle additional input data from Sentinel-5P, the
model architecture is extended with a small sub-network,
consisting of two convolutional layers (with 10, 15 chan-
nels and kernel sizes 3, 5, respectively), each followed by
ReLU activation functions and max-pooling (kernel size 3),
and a final linear layer. This sub-network is much smaller
than the ResNet-50 used to process the Sentinel-2 input
stream to reflect the lower native resolution and single band
nature of the Sentinel-5P data. It learns a 128 dimensional
latent vector from the Sentinel-5P input image. To obtain
an NO, prediction, the latent vectors of both input-streams
are concatenated and again processed by the head with ad-
justed input dimensions (2048+128). All presented models
were trained 10 times with varying seeds, mean-squared-
error loss function and random train/test/validation split of
60:20:20. To limit overfitting, training is stopped once the
loss on the validation set stops decreasing. Additionally,
we employ random flipping and rotation of the inputs as
augmentation during training.

4. Experiments

To assess the predictive power of Sentinel-2 images for air
pollution prediction we initially train a model on Sentinel-2
images as inputs with air quality station measurements as
target. Using only Sentinel-2 images forces the model to
associate features that are apparent in medium-resolution
satellite imagery, like built-up areas, forests or streets, with
representative NOs levels. Training this model from scratch
leads to a mean-absolute-error (MAE) of 8.06+0.49 g /m3
and R2-Score of 0.254-0.05 ;1g/m? (see Table 1), presum-
ably limited by the dataset size of only 3,227 images. Fol-
lowing the intuition that LCC shares predictive features
with air pollution prediction, we then investigated a transfer
learning approach by pre-training the ResNet backend on
BigEarthNet (590,326 images with multi-label annotations,
Sumbul et al., 2019). Using the pretrained backend in the
NO,, prediction model and fine-tuning on the Sentinel-2 im-
ages at air quality stations, we obtain a significantly better
performance. The MAE drops to 6.62+0.17 pg/m3 with
an R2-Score of 0.4540.03. This first result supports our
hypothesis that medium-resolution satellite imagery is valu-
able for the estimation of ambient air pollution. We then
investigated ways of incorporating tropospheric column den-
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Figure 3. Monthly average NO2 measurements from three EEA air
quality stations in Germany, France and Italy (dark colors) and
monthly NO» predictions based on Sentinel-2 and Sentinel-5P
measurements at the same locations (not seen during training).
The shaded area indicates the model’s MAE envelope centered at
the nominal predictions.

sity measurements of NOy from Sentinel-5P into the model
using a second input stream. The additional satellite data
results in a further performance increase with an MAE of
5.92+0.44 and R2-Score of 0.54£0.04 and allows us to
derive detailed pollution maps for any location of interest
(see Fig. 2). Inclusion of Sentinel-5P data, which is updated
daily, also provides us with a way of modeling temporal
variations in NO- levels. Aggregating the data at higher fre-
quency significantly increases the number of observations
(from 3.1k to 19.6k quarterly and 59.6k monthly samples),
which enables the model to maintain a performance com-
parable to the static predictions (MAE of 6.24+0.22 and
6.5240.15 pug/m3 for quarterly and monthly predictions,
respectively). Similarly, the R2-Scores remain at 0.5240.05
(quarterly) and 0.51£0.01 (monthly) despite the increase
in prediction frequency. This makes it possible to model
seasonal changes in NO5 concentrations with good accuracy
(see Fig. 3).

5. Conclusion

We present an end-to-end approach for the estimation of
surface NOs concentrations with deep learning. Utilizing
only remote sensing data as inputs, it is possible to model
arbitrary regions on Earth, independent of the availability
of detailed datasets as commonly used in the prediction
of air pollutant distributions. Qualitative evaluation shows
that our models are robust across most regions of Europe,
except for rare atypical locations that are badly represented
in our dataset, e.g., snowy mountain peaks. In future work,
measurements from air quality networks outside of Europe
can be incorporated into model training to improve model
generalization.

The focus of this work on NOs allows us to leverage a large
corpus of pollutant measurements from air quality stations
and from space to better localize the sources of air pollution
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and GHG emitters. This information enables an approxi-
mate analysis of the spatial and temporal distribution of air
pollutants and GHG emissions alike, providing constraints
that are vital for our effort to reduce GHG emissions and
reaching the net-zero emission target.
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A. Appendix
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Figure Al. Additional examples of surface NO2 predictions from Sentinel-2 and Sentinel-5P data across Europe. Pictures are centered at
locations of EEA air quality stations (red dots). The red text indicates average NO2 measurements (RGB images) and corresponding NO2
estimates (heatmaps).



