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PROBLEM

e Thefrequency and duration of droughts are being

exacerbated by climate change

e Dueto this, drought forecasting is increasingly

Important
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PRIOR WORK
e shows deep learningis promising T
. LA [
O covers single climate region -\’ ‘ /f
O uses distinct models for regions | ____ e

Image: example drought forecasting study area in Australia (Diskhit et al., 2021)



ACROSS CLIMATE REGIONS

e Prior work focuses on forecasting
drought for solitary regions

e A more diverse dataset could lead to
generalisation across regions
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TARGET VALUE: UNITED STATES DROUGHT MONITOR (USDM)
e Expertlabels (5 drought categories)

e Measures agricultural + meteorological drought

e As categories are ordinal we convert to numerical values

e Evaluation: Macro F1 and MAE/RMSE
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DroughtED

e Globally available input features
e Time-invariant features
e Seasonalreference data

e Currently covers continental US

e (Can be expanded to other regions
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NASA POWER PROJECT
e Globally available

e Wind speed, surface pressure, temperature, humidity,
precipitation (21 values) + previous drought values

e 180 days of data leading up to prediction

e

current: 7, ..., 110
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SEASONAL REFERENCE DATA

e Include past values offset by 1 year

® Previous meteorological data + drought values in the same
season can help indicate if current values are normal or

abnormal

—

current: g 1, «««; Le 180

past: Zpy 1, ..., Zp 180
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HARMONIZED WORLD SOIL DATABASE
e time-invariant (indirectly identifies location)

e Elevation, Slope, Aspect, Land Type, Soil Quality (29 Values)

e Enables model to generalise across large areas

Location = HWSD D LatLon



Latitude

>

current:

past:

Input Variables

B 1y +vs T, 180
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MODELS
e Use DroughtED to predict 6

future values (weekly)
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EXPERIMENT RESULTS

Comparing Model Performance on Local vs National Training Data

Training Data | EvaluationData | Week 1 (%)
|Owa |Owa 884
Montana Montana 531
Oklahoma Oklahoma 70.9

|Owa 90-1
All Montana 55.8
Oklahoma 75.8
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CONCLUSION
e Baseline models performed better on multi-regional data

e Baseline models performed favourably to SOTA

FUTURE WORK
e Expand to regions beyond the US, test further models

e kaggle.com/cdminix/us-drought-meteorological-data

e github.com/minixc/droughted scripts



http://kaggle.com/cdminix/us-drought-meteorological-data#
http://github.com/minixc/droughted_scripts

