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Abstract

Increasing renewables penetration motivates the
development of new approaches to operating
power systems under uncertainty. We apply a
novel approach combining self-play reinforce-
ment learning (RL) and traditional planning to
solve the unit commitment problem, an essen-
tial power systems scheduling task. Applied to
problems with stochastic demand and wind gener-
ation, our results show significant cost reductions
and improvements to security of supply as com-
pared with an industry-standard mixed-integer lin-
ear programming benchmark. Applying a carbon
price of $50/tCO2 achieves carbon emissions re-
ductions of up to 10%. Our results demonstrate
scalability to larger problems than tackled in ex-
isting literature, and indicate the potential for RL
to contribute to decarbonising power systems.

1. Introduction and Related Work

The power sector is the single largest contributor to global
CO; emissions (Ritchie & Roser, 2020) and requires rapid
decarbonisation to achieve climate goals. One of the funda-
mental problems in power systems operation is determining
the on/off (commitment) schedules of generation to meet de-
mand, the unit commitment (UC) problem. The UC problem
is traditionally solved by mixed-integer linear programming
(MILP), with a reserve constraint enforced to manage un-
certainties. However, in high renewables systems, such
deterministic methods are outperformed by stochastic for-
mulations (Ruiz et al., 2009), but these have seen limited
real-world application due to high computational costs and
other practical challenges (Bertsimas et al., 2012).

In this paper, we tackle the day-ahead UC problem with a
combination of self-play reinforcement learning (RL) and
traditional planning methods. A policy is trained by self-
play RL in a power system environment, and applied at test
time to reduce the branching factor of a search tree which
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is solved by A* search (Russell & Norvig, 2009). We use
‘guided A* search’ to solve UC problems with stochastic
demand and wind generation, using forecasts based on GB
power system data. We consider power systems of 10, 20
and 30 generators, each with and without a carbon price to
understand: (1) cost-competitiveness with an MILP bench-
mark; (2) scalability to larger power systems; (3) the impact
of carbon pricing on carbon emissions. Compared with
MILP, guided A* search achieves lower operating costs and
loss of load probability, with no loss of performance with
increasing problem size. Implementing a carbon price shifts
generation away from coal-fired power stations towards less
carbon intensive generation, reducing total carbon emissions
by up to 10%. Our research contributes a novel and scalable
approach applying RL to the UC problem, and shows signif-
icant potential to learn complex operational strategies and
outperform MILP approaches.

Existing research in this area (Jasmin & TP, 2009; Dalal &
Mannor, 2015; Jasmin et al., 2016; Navin & Sharma, 2019;
Li et al., 2019) has focused on small numbers of generators,
in part due to the combinatorial action space that limits the
application of existing RL methods ‘out-of-the-box’. In the
most similar research (Dalal & Mannor, 2015), tree search
methods are applied to a system of 12 generators, which,
to the best of our knowledge, is the largest prior study in
this area. However, the problem considered is deterministic
and does not consider generalisability to unseen problems.
In subsequent related research, a larger power system is
considered but the UC problem is simplified to a single
commitment decision per day (Dalal et al., 2016). To the
best of our knowledge, our research is unique in testing on
unseen profiles and investigating carbon pricing.

In the next section, the UC problem is formulated as a
Markov Decision Process (MDP), suitable for RL methods.
We present our methodology of guided A* search in Section
3, which we apply in experiments described in Section 4.
We discuss our results and conclude the paper in Section 5.

2. Unit Commitment as an MDP

To apply RL methods, we formulate the UC problem as an
episodic MDP (Sutton & Barto, 2018), with episodes con-
sisting of 48 decision periods reflecting half-hour market
settlement periods. At each timestep, the agent receives
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Figure 1. Example search tree representing the UC problem for a
system of 3 generators. Nodes on the tree represent observations,
comprised of demand and wind forecasts and generator up/down
times. Actions are combinatorial decisions to commit or decommit
generators at the next timestep. The step cost of traversing an edge
is the expected operating cost.

an observation consisting of the following components: (1)
current generator up/down times u,; (2) demand forecast
d;; (3) wind forecast w;. Demand and wind forecast errors
x, and y, are included in the state s; but unobserved by the
agent. The errors are sampled from error distributions X,
and Y;, which are modelled using with auto-regressive mov-
ing average (ARMA) processes (as used elsewhere in power
systems literature (Soder, 2004)). An action a; € {0, 1} is
chosen by the agent, determining the on/off status for each
of N generators (subject to generator constraints) at the next
timestep. The environment processes a; by evaluating the
transition function F'(s¢41, S¢, a+), updating the generator
up/down times, sampling forecast errors and rolling the fore-
casts forward one timestep. The realisations of net demand
(demand minus wind generation) are used to calculate the
‘economic dispatch’ determining the real-valued power out-
puts p; for each generator 4, such that ), p; equals the net
demand, if possible. Using the economic dispatch, COq
emissions are calculated along with fuel costs, carbon emis-
sions costs, startup costs and lost load costs (i.e. a penalty
when there is not enough capacity to meet net demand).
The negative sum of all costs is the reward ;. The agent
aims to maximise the discounted return from the initial state
IE[ZtT;Ol v!Ry41] with discount factor .

3. Guided Tree Search Algorithms

Since the environment dynamics are largely known and can
be modelled, planning methods can be applied to solve the
MDP. In contrast with model-free RL, using the model to
predict the outcome of actions is very valuable given the
importance of safe operation; lost load events (which may
lead to blackouts) carry extreme penalties in the reward
function and are catastrophic in the real world.

We formulate the UC MDP as a search tree, where nodes
represent states and edges represent actions (Figure 1). Al-
though the transition function is stochastic, such that there
is a one-to-many mapping from (s, a;) — S¢41, observa-
tions omit the stochastic components of the state (forecast
errors x; and y;) meaning there is a one-to-one mapping
in the observation space. The search tree can therefore be
constructed in the observation space. Under this formu-
lation, the cost of traversing an edge (negative reward) is
stochastic, depending on realisations of random variables
X; and Y;. The edge costs are set using a Monte Carlo
method, sampling the transition many times and computing
the mean cost. Due to the combinatorial nature of the ac-
tion space, ordinary planning methods such as A* search
(Russell & Norvig, 2009) are infeasible, with exponential
time complexity in the number of generators. We apply a
novel technique called guided expansion, which exploits an
expansion policy 7(a|s) to choose a subset of actions to add
to the search tree. This enables planning on a reduced search
tree. We train the expansion policy using self-play RL, in
an open-source environment developed for this research!.

3.1. A* Search

We use the informed search method A* search (Russell
& Norvig, 2009) to find the lowest cost path through the
search tree, applying two adjustments to the original algo-
rithm. First, in order to prevent an exponential explosion in
the computation time with respect to the depth, we apply
real-time A* (Korf, 1990), repeatedly using A* to solve a
reduced sub-tree limited to a lookahead horizon H. For
each decision period, the truncated sub-problem is solved,
and the first child in the solution path is chosen as the root
for the next sub-problem. This algorithm has linear time
complexity in the number of decision periods 7'. Second,
rather than fix H to be constant, we apply iterative deepen-
ing (Korf, 1985) and incrementally increase H beginning
at H = 1, while a computational time budget b is available.
This makes our algorithm anytime, meaning the search can
be terminated at any point and return a solution for the sub-
problem. In practice, this is an appealing characteristic, as
electricity market constraints mean that there is a limited
timeframe (typically of the order of minutes) in which the
UC problem must be solved. Applying iterative deepen-
ing maximises the search depth within the computational
budget.

3.2. Guided Expansion

Even with the real-time and iterative deepening adjustments,
applying A* search to even moderately large power systems
is infeasible, since the number of branches can be up to
2N for N generators. We use a novel method that we call

'nttps://github.com/pwdemars/rliuc
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Figure 2. Sequential feed-forward neural network architecture used
to parameterise the expansion policy. Each generator commitment
is classified sequentially with the current action sequence a: used
to estimate the following commitment. In the example, the second
generator is constrained to remain on, so at the first iteration,
a; = [0,1,0].

‘guided expansion’ to reduce the branching factor of the
search tree. When adding nodes to the tree, an ‘expansion
policy’ 7(a|s) (which we train using model-free RL) selects
a subset of actions, by adding only those actions which
satisfy 7(a|s) > p, where 0 < p < 1 is fixed a branching
threshold. The maximum number of nodes M that can be
added to the tree is therefore limited to M < %.

We train the expansion policy with self-play RL using prox-
imal policy optimisation (PPO) (Schulman et al., 2017) on a
set of training episodes. Fully enumerating the actions at the
output layer of the policy is not feasible due to the size of the
action space. Parametrising the multi-dimensional action
space with NV output nodes is also not appropriate due to
the strong dependency of each generator’s action propensity
on the other generators. Instead, the policy is parametrised
as a binary classifier which sequentially predicts each value
in the sequence a = [a1, ag, ..., ay] representing an action,
where a; € {0, 1} are sub-actions giving the commitment
for generator ¢ (Figure 2). The output of the classifier at each
iteration is passed as an input into the next forward-pass
through the network, thus maintaining the history of gener-
ator commitments already decided. In addition, the input
vector includes a one-hot encoding indicating the a; being
classified on each forward pass as well as the observation.
This parametrisation succeeds in preserving the interdepen-
dencies between generators while remaining tractable for
larger power systems.

3.3. Priority List Heuristic for Unit Commitment

A* search exploits a domain-specific heuristic h(n) to esti-
mate the least cost from a node n to a goal node (cost-to-go).
We designed a heuristic based on a simple priority list (PL)
algorithm, which commits generators in order of their min-
imum operating cost. To reduce computation time, this
heuristic only considers the initial minimum up/down time
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Figure 3. Quadratic cost curves for the 10 generators specified in
(Kazarlis et al., 1996), with and without carbon pricing.

constraints. The PL heuristic provides a ‘best-case’ (admis-
sible) estimate for the operating costs, allowing for sub-trees
to be effectively pruned and enabling deeper search within
the time budget.

4. Experiments

We conducted two experiments: (1) comparing the perfor-
mance of guided A* with a MILP benchmark with no carbon
price; (2) investigating the impact of a carbon price. For
each experiment, we investigated power systems of 10, 20
and 30 generators to evaluate scalability, using generator
specifications from (Kazarlis et al., 1996). The data define
quadratic fuel cost curves, minimum and maximum power
limits, minimum up/down time constraints and startup costs
for each generator. The penalty for lost load was set to
$10,000/MWHh, based on estimates in (Schroder & Kuck-
shinrichs, 2015). The demand and wind forecasts used for
training and testing episodes were based on real data from
the GB power system (2016-2019), retrieved from (BMRS,
2021), with 20 days withheld for testing. In training, the
wind penetration (wind generation as proportion of demand)
was 17%, with a maximum daily penetration of 58%.

The expansion policies for each power system were trained
asynchronously with PPO over 8 CPU workers. These poli-
cies were then used in guided A* search to solve 20 unseen
test episodes, with time budgets b between 2—-60 seconds per
decision period. We set the branching threshold p = 0.05
for all problems, limiting the branching factor to 20. Each
UC solution was evaluated using Monte Carlo simulations,
calculating the economic dispatch and associated costs, loss
of load probability and other metrics under 1000 realisa-
tions of demand and wind forecast errors sampled from the
ARMA processes. This allows for comparison of relative
performance on average, considering multiple realisations
of uncertainties for each episode.
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Figure 4. Operating cost saving using guided A* compared with
MILP. Savings generally improve with time budget which allows
for deeper search.

4.1. Guided A* Search vs. MILP

The first experiment considered power systems with no car-
bon price. We compared guided A* with a typical MILP
benchmark, employing a reserve constraint. We used Power
Grid Lib open-source software to solve the UC MILP for-
mulation defined in (Knueven et al., 2020). The reserve
constraint was set to 40, where o is the long-run standard
deviation of the net forecast error (X; — Y;). This is a typi-
cal industry technique for determining reserve constraints
(Holttinen et al., 2008).

Guided A* achieved operating cost savings of up to 0.8%,
1.2% and 1.1% for the 10, 20 and 30 generators, respectively
(Figure 4). In general, performance improved with increas-
ing time budget, enabling deeper search. The loss of load
probability (LOLP) for guided A* search was roughy 50%
lower than for MILP, representing more secure operation of
the power system. Guided A* search employs more extreme
actions (switching multiple generator commitments at once)
than MILP, demonstrating complex operational strategies.
For instance, in the 20 generator problem guided A* search
switches up to 9 generators at once, compared with up to 5
for MILP.

4.2. Impact of Carbon Pricing

In the second experiment, generators were assigned gas,
oil or coal fuel types with emissions factors of 54, 73,
95 kgCO2/MMBTU respectively and a carbon price of
$50/tCO, was applied to fuel use. The cost curves with
and without the carbon price applied are shown in Figure
3. The larger capacity generators are coal-fired in our ex-
periments, having the highest emissions factors, and also
have the longest minimum up/down time constraints. By
contrast, the oil-fired generators have the lowest capacity
and shortest minimum up/down times.

https://github.com/power—grid-1lib/
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Figure 5. Comparison of capacity committed (cap.) using guided
A* search for 10 generator test profile 2016-01-12, with and with-
out a carbon price applied. With a carbon price applied, guided A*
search operates smaller reserve margins to improve efficiency of
the online generators.

Table 1. Comparison of operational characteristics for A* with
and without a carbon price of $50/tCO2. Coal, gas and oil power
stations up-times are shown (% of all periods spent online).

#Gens $/tCO, LOLP (%) ktCO; Coal (%) Gas(%) Oil (%) Startups
10 0 0.12 264.03 99.64 41.88 6.28 141
10 50 0.12  245.89 91.30 61.37 13.19 114
20 0 0.11  527.56 99.09 40.74 8.21 235
20 50 0.09 476.62 86.38 66.24 5.38 164
30 0 0.16  780.43 99.10 40.89 5.69 346
30 50 0.17 72481 88.59 67.86 12.67 215

Applying the carbon price caused significant operational
changes and carbon emissions reductions of 6.9, 9.7 and
7.1% for 10, 20 and 30 generator problems respectively
(Table 1). The emissions reduction is primarily caused
by a shift from the highest carbon intensity baseload units
towards gas-fired power stations with significantly lower
carbon intensity. The medium carbon intensity oil-fired
peaking units still see limited use to manage fluctuations in
demand, although total startups decreased. Figure 5 com-
pares the capacity committed by guided A* search with and
without the carbon price applied for one test episode, show-
ing tighter reserve margins when the carbon price is applied.
LOLP did not increase substantially with the carbon price,
despite the tighter margins.

5. Conclusion

The increasing share of renewables required to decarbonise
the electricity generation mix demands new UC solution
methods that more rigorously account for uncertainties. We
have shown that combining RL with planning methods is a
viable and scalable methodology for solving the UC prob-
lem, achieving cheaper and more secure operation than the
MILP benchmark. Sequential parametrisation of the policy
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was important to achieving tractability and overcoming the
curse of dimensionality in the action space that has limited
previous research to systems of up to 12 generators. By
contrast, we did not observe a decrease in performance as
we increased the problem size to 30 generators.

Shaping the reward function with a carbon price resulted in
carbon emissions savings of between 7-10% and changes to
operational behaviour, such as fewer startups. Coal genera-
tion was displaced by gas, reminiscent of the recent phase-
out of coal in the GB power system. Due to the growing size
and ubiquity of power systems, such changes in the usage
of existing generation assets can yield significant reductions
in global CO, emissions.

Acknowledgements

We thank Prof. Zoltan Nagy, who provided valuable
feedback and mentorship during the writing of this pa-
per. We acknowledge the use of UCL’s Myriad High Per-
formance Computing cluster for this research. This re-
search was supported by an Engineering and Physical Sci-
ences Research Council research studentship (grant number:
EP/R512400/1).

References

Bertsimas, D., Litvinov, E., Sun, X. A., Zhao, J., and Zheng,
T. Adaptive robust optimization for the security con-
strained unit commitment problem. /EEE Transactions
on Power Systems, 28(1):52-63, 2012.

BMRS. Balancing Mechanism Reporting Service. https:
//www.bmreports.com, 2021.

Dalal, G. and Mannor, S. Reinforcement learning for the
unit commitment problem. In 2015 IEEE Eindhoven
PowerTech, pp. 1-6. IEEE, 2015.

Dalal, G., Gilboa, E., and Mannor, S. Hierarchical deci-
sion making in electricity grid management. In Interna-
tional Conference on Machine Learning, pp. 2197-2206.
PMLR, 2016.

Holttinen, H., Milligan, M., Kirby, B., Acker, T., Neimane,
V., and Molinski, T. Using standard deviation as a mea-
sure of increased operational reserve requirement for
wind power. Wind Engineering, 32(4):355-377, 2008.

Jasmin, E. and TP, I. A. Reinforcement learning solution
for unit commitment problem through pursuit method. In
2009 International Conference on Advances in Comput-
ing, Control, and Telecommunication Technologies, pp.
324-327. IEEE, 2009.

Jasmin, E., Ahamed, T. I., and Remani, T. A function ap-
proximation approach to reinforcement learning for solv-

ing unit commitment problem with photo voltaic sources.
In 2016 IEEE International Conference on Power Elec-
tronics, Drives and Energy Systems (PEDES), pp. 1-6.
IEEE, 2016.

Kazarlis, S. A., Bakirtzis, A., and Petridis, V. A genetic
algorithm solution to the unit commitment problem. /EEE
Transactions on Power Systems, 11(1):83-92, 1996.

Knueven, B., Ostrowski, J., and Watson, J.-P. On mixed-
integer programming formulations for the unit commit-
ment problem. INFORMS Journal on Computing, 32(4):
857-876, 2020.

Korf, R. E. Depth-first iterative-deepening: An optimal
admissible tree search. Artificial Intelligence, 27(1):97—
109, 1985.

Korf, R. E. Real-time heuristic search. Artificial Intelligence,
42(2-3):189-211, 1990.

Li, F, Qin, J., and Zheng, W. X. Distributed g-learning-
based online optimization algorithm for unit commitment
and dispatch in smart grid. /IEEFE transactions on cyber-
netics, 50(9):4146-4156, 2019.

Navin, N. K. and Sharma, R. A fuzzy reinforcement learning
approach to thermal unit commitment problem. Neural
Computing and Applications, 31(3):737-750, 2019.

Ritchie, H. and Roser, M. CO2 and Greenhouse
Gas Emissions. Our World in Data, 2020.
https://ourworldindata.org/co2-and-other-greenhouse-
gas-emissions.

Ruiz, P. A., Philbrick, C. R., Zak, E., Cheung, K. W., and
Sauer, P. W. Uncertainty management in the unit commit-
ment problem. IEEE Transactions on Power Systems, 24
(2):642-651, 2009.

Russell, S. and Norvig, P. Artificial Intelligence: A Modern
Approach. Prentice Hall Press, USA, 3rd edition, 2009.
ISBN 0136042597.

Schroder, T. and Kuckshinrichs, W. Value of lost load: An
efficient economic indicator for power supply security?
a literature review. Frontiers in Energy Research, 3:55,
2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Soder, L. Simulation of wind speed forecast errors for op-
eration planning of multiarea power systems. In 2004
International Conference on Probabilistic Methods Ap-
plied to Power Systems, pp. 723-728. IEEE, 2004.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.


https://www.bmreports.com
https://www.bmreports.com

