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Abstract
AC optimal power flow (AC-OPF) problems need
to be solved more frequently in the future to main-
tain the reliable and cost-effective operation of
power systems. Recently, supervised-learning ap-
proaches have been developed to speed up the
solving time of AC-OPF problems without in-
curring infeasibility or much optimality loss by
learning the load-solution mapping embedded in
the training dataset. However, it is non-trivial and
computationally expensive to prepare the training
dataset with single embedded mapping, due to
that AC-OPF problems are non-convex and may
admit multiple optimal solutions. In this paper,
we develop an unsupervised learning approach
(DeepOPF-NGT) for solving AC-OPF problems,
which does not require training datasets with
ground truth to operate. Instead, it uses a prop-
erly designed loss function to guide the tuning of
the neural network parameters to directly learn
one load-solution mapping. Preliminary results
on the IEEE 30-bus test system show that the un-
supervised DeepOPF-NGT approach can achieve
comparable optimality, feasibility, and speedup
performance against an existing supervised learn-
ing approach.

1. Introduction
With the development of the economy, electricity consump-
tion has been increasing rapidly worldwide, and electricity
generation has been one of the primary sources of carbon
dioxide (CO2) emissions. According to the report by EIA
(2020), CO2 emissions by the U.S. electric power sector
were about 32% of total U.S. energy-related CO2 emissions.
The AC optimal power flow (AC-OPF) problem has been
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widely studied to optimize power generation with minimum
cost and all physical constraints satisfied, which is a funda-
mental yet challenging problem in power system operation.
A study by FERC (2013) shows that an efficient AC-OPF
solution approach can potentially save tens of billions of
dollars every year. With more penetration of renewables,
the AC-OPF problem needs to be solved more frequently
to maintain the stable and economic operation of power
systems. Hence, it is of great interest to solve AC-OPF
problems with high efficiency.

Deep neural network (DNN)-based approach has been pro-
posed to solve AC-OPF problems efficiently by exploiting
the powerful learning ability of DNN. Much of the mod-
ern work focuses on supervised learning-based algorithms,
which learns the mapping between loads and optimal gen-
eration set points based on a given dataset generated by
physics-based solvers (e.g., Matpower Interior Point Solver
(MIPS)). Existing approaches can be classified into two
main categories: hybrid approach and stand-alone approach.
The hybrid approach accelerates conventional solvers by pro-
viding warm-start points (Dong et al., 2020) or predicting
active (Chen & Zhang, 2020) /inactive constraints (Hasan
et al., 2021). The stand-alone approach predicts the solu-
tion of the AC-OPF problem directly without solving the
optimization problem, which has a greater speedup than
the hybrid approach (Pan et al., 2019; 2020a;b; Zamzam
& Baker, 2020; Baker, 2020). The main idea is to pre-
dict decision variables (i.e., optimal generation set points)
and then reconstruct the remaining variables using a power
flow solver. Without solving power flow equations, Chat-
zos et al. (2020) combine DNNs and Lagrangian duality
to predict all variables directly, but the critical power flow
balance constraints may not be satisfied. To improve both
the speedup and feasibility of existing approaches, a DNN-
based voltage-constrained approach DeepOPF-V (Huang
et al., 2021) is proposed, which predicts all bus voltages and
then reconstructs all remaining variables via simple matrix
operation.

All the above approaches require a large dataset for DNN
training, which is computationally expensive, especially for
large-scale power systems. More importantly, due to the
non-convexity of AC-OPF problems, solvers may provide
one of the locally optimal solutions for each load configura-
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tion, and different initial points may even lead to different
solutions (Chiang & Wang, 2018). Consequently, there is
no guarantee for the optimality of the generated dataset. Per-
haps more critically, the samples in the dataset may belong
to different mappings between the load to (sub-)optimal so-
lutions, which hinders the learning performance of DNNs.

To address the above issues, we take a different approach
by developing a fast unsupervised learning approach named
DeepOPF-NGT to solve AC-OPF problems efficiently with-
out training dataset 1. In this work, we use the proposed
DeepOPF-NGT to find the mapping between loads and bus
voltages and then directly reconstruct the remaining vari-
ables via simple scalar calculation, which guarantees the
power flow balance constraints and is expected to achieve
decent speedup. A loss function is properly designed to
provide guidance for DNNs to find the inherent mapping
between loads and AC-OPF solutions without ground truth.
During training, the parameters of DNNs are updated to
minimize the loss function. The preliminary results of the
IEEE 30-bus test system verify the potential effectiveness
of DeepOPF-NGT. Experiments for large-scale systems are
currently being carried out. Note that DeepOPF-NGT pro-
vides an unsupervised learning framework for regression
problems without ground truth. It can also be extended to
other unsupervised regression problems.

2. Model and Methodology
2.1. AC Optimal Power Flow

Standard AP-OPF model can be formulated as follows:

min
∑

i∈NG

C(Pgi) (1)

s.t. Pi =
∑
j∈N

ViVj(gijcosθij + bijsinθij), i ∈ N (2)

Qi =
∑
j∈N

ViVj(gijsinθij − bijcosθij), i ∈ N (3)

Pi = Pgi − Pdi, i ∈ N (4)
Qi = Qgi −Qdi, i ∈ N (5)

P gi ≤ Pgi ≤ P gi, i ∈ NG (6)

Q
gi
≤ Qgi ≤ Qgi, i ∈ NG (7)

V i ≤ Vi ≤ V i, i ∈ N (8)

P 2
ij +Q2

ij ≤ S
2

ij , (i, j) ∈ E (9)

Pij = gijV
2
i − ViVj(bijsinθij + gijcosθij), (i, j) ∈ E

(10)

Qij = −bijV 2
i − ViVj(gijsinθij − bijcosθij), (i, j) ∈ E

(11)

1Recently, an unsupervised learning framework for AC-OPF
problems was also developed by Donti et al.(2021). However, it
may not guarantee the critical power flow balance constraints.

θij ≤ θij ≤ θij , (i, j) ∈ E (12)

where N , NG and E denote the sets of all buses, generation
buses and transmission lines; gij and bij represent conduc-
tance and susceptance of branch (i, j), respectively. For
bus i, Pi and Qi represent net active and reactive power in-
jections, respectively; Pgi, Qgi, Pdi and Qdi denote active
power generation, reactive power generation, active load
and reactive load, respectively; Vi and θi are voltage magni-
tude and angle, respectively. For branch (i, j), θij = θi−θj
denotes branch angle; Pij and Qij are active and reactive
branch power flows, respectively. The upper and lower
bounds of variable x are denoted by x and x, respectively.
The AC-OPF problem aims to minimize generation costs
in (1) with the satisfaction of all physical constraints in (2)-
(12). The Kirchhoff’s circuit laws are ensured by (2)-(3);
net power injections are derived by (4)-(5); active and reac-
tive power generation limits are enforced by (6)-(7); voltage
magnitude limit is ensured by (8); branch flow is restricted
by (17)-(11); and voltage angles are restricted by (12).

2.2. Unsupervised Learning Approach without Ground
Truth

The schematic of the proposed DeepOPF-NGT is illustrated
in Figure 1. This DNN-based model is comprised of fully
connected layers with rectified linear unit (ReLU) activa-
tion function on each hidden layer and sigmoid activation
function on the output layer. It aims to learn the mapping be-
tween load configurations (Pd,Qd) and bus voltages (θ,V ),
where Pd and Qd are vectors of active and reactive loads,
respectively; θ and V are vectors of voltage angles and
magnitudes, respectively. Using the well-trained DNNs,
the predicted voltage magnitudes V̂ and voltage angles θ̂
can be obtained instantly with the input of (Pd,Qd). Then,
using the predicted voltage magnitudes V̂ , voltage angles
θ̂ and the load input (Pd,Qd), we can easily compute the
right-hand side (RHS) of the equations in (2)-(3). Then,
the remaining solution variables P̂g, Q̂g and some auxil-
iary variables (P̂d, Q̂d) are directly calculated from (4)-(5)
using the obtained RHS values without the need to solve
non-linear power flow equations. Specifically, for each
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Figure 1. Schematic of the proposed no ground truth deep-learning
based approach DeepOPF-NGT.
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bus i, 1) if there are only generators or loads, its predicted
active/reactive generation (i.e., P̂gi/Q̂gi) or active/reactive
load (i.e., P̂di/Q̂di) is obtained directly; 2) if there are both
generators and loads, P̂di and Q̂di are set to the given loads
Pdi and Qdi, respectively, and then P̂gi and Q̂gi are directly
calculated from (2)-(5). The objective function is calculated
by (1) after obtaining P̂g. Due to the voltage prediction
errors, there could be unsatisfied loads, i.e., the mismatches
between (Pd,Qd) and (P̂d, Q̂d), which will be discussed
in Section. 2.3.

To guide the unsupervised training of DNNs without ground
truth, the loss function is designed as follows:

L = kgenLgen + Lcons + kdLd, (13)

where kgen and kd positive constants. In the loss function
L, Lgen is designed to minimize the generation cost, Lcons
to find feasible solutions satisfying constraints in (2)-(12),
and Ld to satisfy demanded loads. The power flow balance
constraints in (2)-(3) are satisfied automatically since power
injections can always be obtained with predicted bus volt-
ages. Hence, by applying L, there is no need of ground truth
to train DNNs. The generation cost Lgen is the generation
cost calculated by

Lgen =
∑
i∈NG

(aiP
2
g,i + bi|Pg,i|+ ci), (14)

where ai, bi and ci are positive constants. The term Lcons
is the penalty for constraint violation during training, which
is obtained by

Lcons = kgLg + ksLSl
+ kθLθl , (15)

where kg , ks and kθ are positive constants; Lg , LSl
and Lθl

are penalties for the violation of generation, branch flow
and branch angle constraints during training, respectively,
which are computed as below:

Lg =
∑
i∈NG

[max(P̂gi − P gi, 0) + max(P gi − P̂gi, 0)

+ max(Q̂gi −Qgi, 0) + max(Q
gi
− Q̂gi, 0)] (16)

Lsl =
∑
i,j∈N

[max(Ŝij − Sij , 0)] (17)

Lθl =
∑
i,j∈N

[max(θ̂ij − θij , 0) + max(θij − θ̂ij , 0)] (18)

where Ŝij =
√
P̂ 2
ij + Q̂2

ij , and P̂ij , Q̂ij are active and
reactive branch power flows derived from predicted voltages
(θ̂, V̂ ). Besides, Ld penalizes the deviation between the
demanded loads (Pd,Qd) and the satisfied loads (P̂d, Q̂d)
as follows:

Ld =
∑
i∈NL

(|P̂di − Pdi|+ |Q̂di −Qdi|). (19)

As discussed in (Huang et al., 2021), due to prediction er-
rors, there could be mismatches between the given loads and
those obtained from predicted voltages. However, the unsat-
isfied loads are also inevitable in conventional approaches.
In addition, considering power losses in transmission lines,
a small ratio (around 1%) of load-generation imbalance is
acceptable.

2.3. Neural Network Training for DeepOPF-NGT

The DNNs of DeepOPF-NGT is trained by minimizing
the loss function L. A simple and viable approach is to
apply the gradient descent algorithm. Denote the parameters
of DNNs as φ and the corresponding mapping from the
input x = (Pd,Qd)

T to the output y = (θ̂, V̂ ) as y =
f(x, φ). Then, we can obtain P̂g(f(x, φ)), Q̂d(f(x, φ)),
P̂d(f(x, φ)), Q̂d(f(,φ)), Q̂d(f(x, φ)), Ŝij(f(x, φ)) and
θ̂ij(f(x, φ)). Thus, φ is updated according to

φt+1 = φt − αt∇φt
L, (20)

where αt is a positive step size at the t-th epoch of training,
and the gradient∇φL can be obtained by using Chain rule
as below

∇φL = ∇yL · ∇φy
= (kgen∇yLgen +∇yLcons + kd∇yLd) · ∇φy
= [(kgen∇P̂g

Lgen + kg∇P̂g
Lg + ksl∇P̂g

Lsl) · ∇yP̂g(y)

+ (kg∇Q̂g
Lg + ksl∇Q̂g

Lsl) · ∇yQ̂g(y)

+ kd∇Ŝij
Lsl · ∇yŜij(y) + kθ∇θijLθl · ∇yθ̂ij(y)

+ kd∇P̂d
Ld · ∇yP̂d(y) + kd∇Q̂d

Ld · ∇yQ̂d(y)] · ∇φy.
(21)

For faster and better convergence, the mini-batch stochas-
tic gradient descent is employed to calculate ∇yL, which
makes a trade-off between batch gradient descent and
stochastic gradient descent (Hinton et al.).

2.4. Discussion

In this work, the optimal parameters of DNNs are searched
by using mini-batch gradient descent algorithm. On one
hand, due to the non-convexity of loss function L, the ob-
tained parameters of DNNs may be sub-optimal. Hence, the
predicted AC-OPF solutions may be sub-optimal. However,
existing solvers can only provide sub-optimal solutions as
well. Up till now, how to find globally optimal solutions
for AC-OPF under general settings is still an open prob-
lem. On the other hand, compared with existing supervised
learning-based approaches, the proposed DeepOPF-NGT
does not need ground truth, and it has the potential to find
better solutions than conventional solvers. Moreover, as
discussed in Section 1, due to that AC-OPF problems are
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Table 1. Parameter settings for DeepOPF-NGT and DeepOPF-V.

APPROACH BATCH LEARNING EPOCH HIDDEN
SIZE RATE LAYERS

DEEPOPF-NGT 100 0.001 300 128-64-64
DEEPOPF-V 100 0.001 1000 128-128-64

non-convex and may have multiple optimal solutions, the
load-solution pairs in the training dataset may correspond
to multiple load-solution mappings. This creates difficulty
for supervised learning approaches that were designed to
learn just one mapping from the dataset. In contrast, our
unsupervised learning approach can avoid this issue.

3. Case Study
3.1. Experimental Setup

Simulations are conducted on IEEE 30-bus test system.
The dataset contains 12,500 load samples with an 80–20%
training-test split. Each sample only contains a set of load
scenarios sampled randomly for each load bus from a uni-
form distribution of 10% variation around the default load.
To verify its effectiveness, the proposed DeepOPF-NGT is
compared with DeepOPF-V (Huang et al., 2021) which is
a supervised learning approach that learns the mapping be-
tween loads and bus voltages. The dataset for DeepOPF-V
contains not only 12,500 different sets of load scenarios
mentioned above but also the corresponding ground truths,
i.e., AC-OPF solutions obtained by the OPF solver MIPS.

The DNN-based models are designed on the platform of
Pytorch. The hyper-parameters are fine-tuned by trial and
error (see Table. 1). Note that the size of the hidden layer
in DeepOPF-NGT is larger than that in DeepOPF-V. The
reason is that DeepOPF-NGT predicts voltage magnitudes
and angles together in one single DNN-based model. In
contrast, while DeepOPF-V predicts voltage magnitudes
and angles separately in two DNN-based models. Hence, the
output dimension of the DNNs in DeepOPF-NGT is larger
than that in DeepOPF-V. Simulations are run on the quad-
core (i7-3770@3.40G Hz) CPU workstation with 16GB
RAM.

3.2. Performance Evaluation

To evaluate the performance of the proposed DeepOPF-NGT
comprehensively, the following metrics are considered:

1) Speedup Factor: The speedup factor ηsp measures the
average ratios of the computation time consumed by MIPS
to solve the original AC-OPF to the computation time con-
sumed by DeepOPF-NGT. A larger value of ηsp refers to

Table 2. Performance comparison results in IEEE 30-bus system.

METRIC DEEPOPF-NGT DEEPOPF-V

ηopt(%) <0.4 <0.1
ηV (%) 100.0 100.0
ηPg (%) 100.0 100.0
ηQg (%) 100.0 100.0
ηSl (%) 100.0 100.0
ηθl (%) 100.0 100.0
ηPd (%) 99.3 99.8
ηQd (%) 99.2 99.3
ηsp AROUND×640 AROUND×610

better speedup performance.

2) Optimality Loss: It measures the average relative devi-
ation ηopt between the optimal objective value found by
MIPS and that by DeepOPF-NGT.

3) Constraint Satisfaction: It evaluates the feasibility of
predicted solutions by the percentage of bound constraints
satisfied. The constraint satisfaction ratios of active power
generation, reactive power generation, bus voltage, branch
power flow and branch angle are denoted by ηPg , ηQg , ηV
ηSl and ηθl , respectively.

4) Load Satisfaction Ratio: It is defined as the percentage
of demanded loads satisfied. The active and reactive load
satisfaction ratios are denoted as ηP d

and ηQd
, respectively.

The experimental results are summarized in Table. 2. As
seen, the optimality losses of these two approaches are
both less than 0.4% with inequality constraints all satis-
fied. Besides, the load satisfaction ratios are all larger than
99%. Both of these two approaches can speed up the solu-
tion of AC-OPF by more than three orders of magnitude,
i.e., around×640 and around×610 for DeepOPF-GNT and
DeepOPF-V, respectively. Note that the proposed DeepOPF-
NGT has a little larger speedup than DeepOPF-V. As il-
lustrated in Section 3.1, DeepOPF-NGT has a smaller size
of DNNs than that of DeepOPF-V, resulting in a little less
computation time than DeepOPF-V. Note that the parallel
computation time was recorded for DeepOPF-V.

Overall, in the small-scale simulations above, the unsuper-
vised learning approach DeepOPF-NGT has comparable
performance with the supervised learning-based approach
but does not need to prepare a large dataset for DNN train-
ing. We are currently carrying out extensive simulations for
larger systems and higher load variation.

4. Conclusion
We propose a fast unsupervised learning approach
DeepOPF-NGT to solve AC-OPF efficiently without ground
truth. It predicts bus voltages using the well-trained DNN-



Submission and Formatting Instructions for ICML 2021

based model and then reconstructs all remaining variables
according to power flow equations. Compared with exist-
ing approaches that only learn the load-solution mapping
embedded in the training dataset, the proposed DeepOPF-
NGT directly identifies the inherent load-solution mapping
without ground truth. A loss function based on the AC-OPF
problem is properly designed to guide the DNN training
with mini-batch stochastic gradient descent. Simulation
results on the IEEE 30-bus test system show that DeepOPF-
NGT has comparable performance with the state-of-the-art
supervised learning-based approach. It provides feasible
solutions with negligible optimality loss less than 0.4% and
decent computation speedup that is more than three orders
of magnitude faster than conventional solver MIPS.

In this paper, we only present very preliminary results to
show the potential of DeepOPF-NGT. We are also actively
carrying out experiments for large-scale systems. Besides,
we will explore a more efficient algorithm for DNN training.
There is a great potential that the proposed DeepOPF-NGT
may find better solutions than conventional solvers since its
performance will not be restricted by the dataset generated
by OPF solvers. Moreover, the scalability of DeepOPF-
NGT for large-scale power systems will also be explored.
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