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Motivation to Study Biodiversity Loss



Biodiversity Monitoring

 Animal Tracks Feeding Sites

Capture



Machine Learning in Biodiversity Monitoring

 Camera Trap Arrays

❖ Natural next step of biodiversity monitoring 
due to advancements in the field of image 
classification that has been driven by deep 
learning.

❖ Relatively easy for laymen to annotate 
training and test sets of animal images.
➢ Leads to citizen science projects

❖ Hardware is often sophisticated with 
motion sensing technology as well as night 
vision. 
➢ More points of failure in the 

hardware
❖ Limited to studying larger, oftentimes 

mammalian species.
❖ Clear lines of sight must be established 

which can necessitate clearing out natural 
obstacles in staging area.



Passive Acoustic Monitoring

 Audio Arrays

❖ Another natural next step in the field of 
biodiversity monitoring due to 
advancements in the field of natural 
language processing
➢ Also leverages techniques from 

image processing with 
spectrograms

❖ Collect audio from species that are too 
inconvenient for camera trap capture
➢ Many of which are key indicator 

species
❖ Low-cost open-source audio recorders that 

is minimally invasive
❖ Challenging for laymen to annotate audio 

recordings
❖ Not a wide abundance of labeled audio to 

reliably train models and classify most 
species of interest.

❖ Challenging to label audio clips



❖ 35 Audiomoths deployed
❖ Deployed in Madre de Dios, 

Peru
❖ Deployed by San Diego Wildlife 

Alliance Researchers
❖ Deployed nearby roads on land 

managed by an FSC certified 
logging company

❖ Set to record for one minute 
every ten minutes

❖ 3.9 terabytes/1500 hours of 
audio data collected

Summer 2019 Peruvian Amazon Audiomoth Deployment



Resources Used

DCASE 2018 - Training/Validation Dataset
❖ “freefield1010” - 7690 field recordings of bird presence/absence from around the world
❖ “warblr10k” - 8000 bird presence/absence smartphone audio recordings from around the United 

Kingdom
❖ 80/20 split of these datasets from training and validation respectively
❖ Dataset Link: http://machine-listening.eecs.qmul.ac.uk/bird-audio-detection-challenge/

Microfaune
❖ Hybrid Recurrent Neural Network - Convolutional Neural Network model

➢ Model derived from Veronica Morfi and Dan Stowell
❖ Github Link: https://github.com/microfaune/microfaune

http://machine-listening.eecs.qmul.ac.uk/bird-audio-detection-challenge/
https://github.com/microfaune/microfaune


Audiomoth Data - Testing Dataset
❖ Stratified Random Sample of Madre de Dios field recordings

➢ One minute from every hour of the day from each Audiomoth device
❖ Stratified clips from 16 Audiomoths were taken and broken down into 3 second segments a labeled for bird 

presence/absence
➢ 7120 3 second clips in total

Xeno-canto/Google Audioset Ontology - Testing Dataset
❖ 4774 bird-present audio clips of Madre de Dios species scraped from xeno-canto

➢ 2-3 random clips from ~ 1000 bird species
➢ 50 random clips from 50 particular species of interest

❖ 4774 Google Audioset Ontology audio clips from classes unlikely to contain bird calls.

Resources Used



Audiomoth ROC Curve

Results after Training on Original Data

Xeno-canto ROC Curve



Audiomoth ROC Curve

Results after Training on Augmented Data
Speed Augmentations: 0.9, 1.1; Gaussian Noise Augmentations: 0.005, 0.1

Xeno-canto ROC Curve



Active Learning

Human 
Labeler

Madre de 
Dios Field 
Audioset

Global 
Score
> 0.7

Neural 
Network

Maybe 
Bird

Future Plans to Tackle Field Recordings

Global 
Score
< 0.3

New Data Augmentation Techniques
❖ Pink Noise
❖ Tempo Modulation 
❖ Pitch Modulation 
❖ Random Filtering
❖ Salt and Pepper

Referee Labeling Process

Transfer Learning
❖ Derive lower layers from a larger neural network 

and train final layers on dataset of interest.
❖ Has the potential of skewing very powerful 

networks towards an ecosystem of interest
❖ Reduces dataset size and training time.

Audio Labeler 1 Labeler 2 Referee

Clip 1 Bird Bird N/A

Clip 2 Bird 
Absent

Bird 
Absent

N/A

Clip 3 Bird Bird 
Absent

Bird
*Final label for 

clip 3



 Further Information
❖ Paper Github Repository: 

https://github.com/UCSD-E4E/AID_ICML_2021
❖ Engineers for Exploration:

http://e4e.ucsd.edu/
❖ San Diego Zoo Wildlife Alliance:

https://science.sandiegozoo.org/population-sust
ainability
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