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Abstract

Peat fires are the largest fires on earth in terms of
fuel consumption and are responsible for a sig-
nificant portion of global carbon emissions. Pre-
dicting fires in the peatlands can help decision
makers and researchers monitor and prevent peat
fires. Despite this, research on predicting peatland
fires remains largely understudied as compared
to prediction of other forms of fires. However,
peatland fires are unique among fires and there-
fore require datasets and architectures attuned to
their particular characteristics. In this paper, we
present a new dataset, PeatSet, designed specifi-
cally for the problem of peatland fire prediction.
In addition, we propose several models to tackle
the problem of fire prediction for the peatlands.
We develop novel neural architectures for peat-
land fire prediction, PeatNet and PT-Net, with
a graph-based and a transformer-based architec-
ture, respectively. Our results indicate that these
new deep-learning architectures outperform a re-
gression baseline from existing peatland research.
Among all the tested models, PT-Net achieves the
highest F1 score of 0.1006 and an overall accuracy
of 99.84%.

1. Introduction
Peatlands are a type of wetland that include marshes, bogs,
fens, and swamps. They sequester more than twice as much
carbon as stored in the world’s forests despite covering
only 3% of the Earth’s land area (International Union for
Conservation of Nature, 2017; Turetsky et al., 2015). Cli-
mate change has exacerbated the magnitude and frequency
of fires and the length of the fire season (Flannigan et al.,
2009). Additionally, peat fires release a large amount of the
carbon sequestered in peatlands, emitting massive amounts
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of carbon dioxide. The combination of anthropogenic cli-
mate change and peat fires form a positive feedback loop of
peatland carbon emissions.

Several features of peatland fires differentiate them from
commonly-explored forest fire approaches. First, peat fires
produce less heat than typical fires. Second, peat fires can
occur underground, in wet or cold areas, and even under
snow as exemplified by western Canadian peat fires (Thomp-
son, 2020). Third, peat fires can last for months when they
are smouldering underground, challenging the use of burn
duration as a heuristic for fire severity. Fourth, factors such
as soil carbon and soil moisture are far more important for
peatland fires than forest fires since the soil itself is a fuel
source. Consequently, normal fire prediction techniques are
less effective on peatland fires.

Prior work on regular forest fire and peatland fire prediction
do present baselines to test the suggested models against.
Most notably, the current state-of-the-art machine learning
algorithms for forest fire prediction use convolutional neural
networks (CNN) (Hodges et al., 2019; Radke et al., 2019).

Within the peatland research domain, there has only been
a handful of studies in fire prediction, and far fewer that
leverage deep-learning methods. Honma et al. (2016); Listy-
orini and Rahim (2018) use a system of detectors near a
specific peatland to predict fire spread. Bourgeau-Chavez
et al. (2020a) perform a review of four fires in peatlands to
determine how the type of a peatland affects its likelihood
of burning (Bourgeau-Chavez et al., 2020b). Maulana et al.
(2019) use logistic regression to predict active fire areas.
However, these models fail to scale well and are unable
capture the complex relation between different causes as
well as needed. Due to space constraints, we defer a more
detailed discussion of previous work in Appendix I.

We propose bridging between the technical research on deep
learning architectures and the scientific research on peat-
land fires to create a powerful prediction model for peatland
fires. In line with this, our first general contribution is a new
dataset, PeatSet, designed specifically for the problem of
peatland fire prediction using previously existing datasets
in the region of Canada. Our second main contribution,
are two novel neural architectures for peatland fire predic-
tion, PeatNet and PT-Net that we propose, implement, and
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Figure 1. (upper-left) Tarnocai Peatland heatmap indicating percentage(%) of peatland cover. (upper-right) Burned area in the peatlands
by masking the CWFIS burned area with Tarnocai. CWFIS data was max aggregated from 2012 to 2018. (lower-left) CO2 emissions in
the peatlands by masking the Global CarbonTracker data with Tarnocai. Data is in units of molar density, and is mean aggregated from
2012 to 2018. (lower-right) Total organic carbon content (kg/m2) in the peatlands by the Tarnocai dataset.

test. PeatNet is a graph-based architecture, and PT-Net is a
transformer-based architecture.

This paper is organized as follows: in section 2, we highlight
our dataset and model contributions; in section 3, we present
our results in Results and in section 4, we present an analysis
of the results .

2. Methodology
In this section, we elaborate on our two main contributions:
the dataset and the models.

2.1. Dataset: PeatSet

Our first contribution is the curation of the first compre-
hensive peat fire dataset, PeatSet, consisting of previously
existing remote sensing and manually labelled datasets. The
spatial region of our dataset covers Canada because of the
large area of peatlands and its relative abundance of publicly
available data. We use PeatSet for the tasks of predicting
CWFIS burned area categories. Figure 1 presents visual-
izations of the key features used over the Canadian region.
Table 2 in Appendix II presents the features used for the
prediction of fires.

Peatland Features: To delineate peatland from other land,
we use the Tarnocai Peatland Map, which is the standard
dataset used for determining where peatlands are in Canada.
The map is divided into polygons, where each has an asso-
ciated percentage of peatland cover, PEATLAND P.

Fire Features: We use the burned area product from the
Canadian Wildland Fire Information System (CWFIS) (Ser-
vice, b), the most comprehensive dataset for fires in Canada.

The data is in part manually reported from governmental
agencies, and should have greater inclusion of the unique
kind of fires in peatlands as compared to remote sensing
sources.

CO2 Emissions Features: We use the Global Monitoring
Laboratory Carbon Tracker CT2019, which has a 3-by-2
longitude/latitude resolution across the globe for CO2 emis-
sions. CT2019 also includes the flux of CO2 across the
globe. Flux is the gradient of concentration, and determines
the source of the CO2 emissions and the cause, e.g. fire, fos-
sil fuels. CO2 emissions is an indirect measurement of the
presence of underground fires, as underground fires output
significant CO2.

Soil Features: We include features pertaining to the amount
of carbon stored in the land, given by the Tarnocai dataset.
Store carbon is a basic indicator of how much CO2 is emitted
if a fire burns over a given area.

Hot Spot Features: We incorporate hot spot data from the
VIIRS dataset, as it indicates where fires are burning. With a
finer resolution, the VIIRS satellite sensor imagery captures
smaller fires as compared to MODIS, the standard satellite-
based data used by many fire datasets such as the Global
Fire Emissions Database (GFED). In general, hot spots have
a confidence measurement of being associated with a fire,
based upon its temperature. Since peatland fires burn at a
lower temperature than traditional fires, low-confidence hot
spots that persist over a long duration may still indicate the
presence of peatland fires.

Additional Soil and Weather Features: From ERA5, we
use soil moisture and soil temperature as indicators of a fire
and wind velocity to account for the spread of CO2 from a
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Figure 2. UNet-LSTM Architecture: Each batch is first fed into a U-Net component and then reshaped before being passed into the LSTM
layer. b: batch size, h: height, C′: number of output channels from the U-Net component, C: number of output channels where there is
one for each class.

Graph 
Convolution

U-Net-LSTM 
architecture Input

Input 
Graph

Output

Figure 3. PeatNet Architecture: Dark points represent peatland, and light points represent non-peatland. Each node also has a self-loop in
addition to the edges shown. Refer to the UNet-LSTM diagram in Figure 2 for a detailed description of its architecture.
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Figure 4. PT-Net Architecture: The input batch is encoded by the down-sampling layers, accumulated by the attention modules, and then
up-sampled into the output.

source.

Refer to Appendix II for further details on the dataset fea-
tures and processing.

2.2. Models

We test several models including U-Net, UNet-LSTM, Peat-
Net, and PT-Net. In order to compare our results to previous
work, we also implement and test a logistic regression model
as a baseline. This section first describes an auxiliary model
we use, UNet-LSTM, and the two novel model architectures
used for the prediction task, PT-Net and Peatnet.

2.3. UNet-LSTM

We implement UNet-LSTM, based on the U-Net model
(Ronneberger et al., 2015), which is able to learn both the
spatial information and temporal information. The diagram
for the UNet-LSTM is shown in Figure 2. The inputs are
first passed through the U-Net component and then to the
LSTM layer. The U-Net component considers the temporal
information as a part of the batch dimension, and thus only
learns the spatial features. The output of this component
is then reshaped such that the spatial features are a part of
the batch dimension and the temporal features no longer
are; this is then fed into the LSTM layer, which learns only
temporal relations.
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Recall Precision F1 Accuracy
LR 0.8186 0.0016 0.0032 0.4298

U 0.9906 0.0212 0.0419 0.9607
UL 0.9944 0.0294 0.0571 0.9650
PN 0.9668 0.0274 0.0532 0.9632
PT 0.9232 0.0532 0.1006 0.9984

Table 1. Prediction results. Accuracy is high across all the models
since there are more non-fire points as compared to fire points.
It is therefore more meaningful to examine the recall, precision,
and F1. Here, PT-Net dominates the other models. LR - Logistic
Regression, U - UNet, UL - UNet-LSTM, PN - PeatNet, PT -
PT-Net.

2.3.1. PEATNET

We first propose PeatNet, a novel graph network model,
which is a graph-based neural network model designed to
account for the underground spread of peat fires. Refer to
Figure 3 for the outline of the architecture. The landmass
is represented as being composed of a grid of points, where
each point is a node in the graph. Nodes that model a
point on peatland are connected to other peatland nodes
within a distance of k, a hyperparameter; though a fire
may spread far away, it is unlikely to spread past a certain
distance. Each node also has a self-edge to model that a
site with a fire will likely continue to have fire. A graph
convolution is then applied to the graph, such that the nodes
representing peatland gain information about other peatland
nodes. We then pass the graphical convolution result and
the original input features to a UNet-LSTM component.
Finally, the output of the UNet-LSTM is passed through a
fully connected layer to yield the final output.

2.3.2. PT-NET

The second model that we propose is PT-Net. Recent state-
of-the-art studies show that attention-based neural networks
are able to capture sequence-based data better than other
neural networks, such as Long Short-Term Memory (LSTM)
models. Our model is based on a residual encoder-decoder
(He et al., 2015) with three down-sampling blocks in the
encoder and three up-sampling blocks in the decoder, as
shown in Figure 4. We account for temporal relations with a
transformer module (Vaswani et al., 2017), which has three
multi-head self-attention layers that focus on multiple past
time-steps to predict the future time-step.

3. Results
In this section, we detail the training and testing and present
the results in Table 1.

The models are evaluated on recall, precision, F1, and ac-
curacy. Each model is provided 5 days of covariate input

data and predicts CWFIS burn classes for the subsequent
day. The data is split into 70% train, 15% test and 15%
validation days.

Note that for this task, recall is defined as the fraction of the
fires correctly predicted over the total number of fires. Pre-
cision is defined as the fraction of the correct fires predicted
over the total number of fires predicted.

We use binary cross entropy as the loss function for training
the models. Note that the dataset is heavily skewed since
there are far more non-fire points than fire points. We weigh
the fire class a thousand times more heavily than the non-
fire class because there are about one thousand non-fire
data-points in training to a fire data-point.

4. Discussion
We first assemble a collection of relevant datasets to enable
future studies of peatland fires. We hope that the data collec-
tion we provide will facilitate further research into peatland
fire prediction. Additionally, we develop several novel ar-
chitectures and adapt recent machine learning models to the
problem of peat fire prediction. Our best model, PT-Net,
shows great improvement in performance over previous
models for fire prediction.

Our experiments show that models that consider spatiotem-
poral aspects of the data outperform those that do not. The
regression model, which does not have information from
nearby blocks, performs drastically worse than the models
with access to spatial information. The UNet-LSTM and
PT-Net, which both use spatial and temporal features, outper-
form the U-Net, which does not capture temporal informa-
tion. PT-Net outperforms U-Net, UNet-LSTM, and PeatNet.
A likely explanation for the higher performance of UNet-
LSTM as compared to PeatNet is that locality generally
dominates in fire modeling, and therefore, the long-distance
relationships PeatNet captures through its graph-layer are
less relevant.

This work can easily be expanded to other peatlands across
the world with appropriate dataset expansion. The flexibility
of our neural network approach allows additional features
to be easily integrated. Additionally, accurate fire spread
and severity prediction can allow decision makers to invest
their attention to peatlands at high risk for fires and take
appropriate preventative actions. By applying the tools
developed in this work to the fire safety industry, we can
significantly mitigate the carbon emissions that contribute
to climate change today and reduce the damage caused by
peat fires, as well as preserve existing peatland ecosystems.
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J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu,
D. Schepers, et al. (2020). The era5 global reanaly-
sis. Quarterly Journal of the Royal Meteorological Soci-
ety 146(730), 1999–2049.

Hodges, J. L., B. Y. Lattimer, and K. D. Luxbacher (2019).
Compartment fire predictions using transpose convolu-
tional neural networks. Fire Safety Journal 108, 102854.

Honma, T., K. Kaku, A. Usup, and A. Hidayat (2016). De-
tection and prediction systems of peat-forest fires in cen-
tral kalimantan. In Tropical Peatland Ecosystems, pp.
397–406. Springer.

Hugelius, G., J. Loisel, S. Chadburn, R. B. Jackson,
M. Jones, G. MacDonald, M. Marushchak, D. Olefeldt,
M. Packalen, M. B. Siewert, et al. (2020). Large stocks
of peatland carbon and nitrogen are vulnerable to per-
mafrost thaw. Proceedings of the National Academy of
Sciences 117(34), 20438–20446.

International Union for Conservation of Nature (2017,
November). Peatlands and climate change.

Jin, G., C. Zhu, X. Chen, H. Sha, X. Hu, and J. Huang
(2020). Ufsp-net: a neural network with spatio-temporal
information fusion for urban fire situation prediction. In
IOP Conference Series: Materials Science and Engineer-
ing, Volume 853, pp. 012050. IOP Publishing.

Kalacska, M., J. P. Arroyo-Mora, R. J. Soffer, N. T. Roulet,
T. R. Moore, E. Humphreys, G. Leblanc, O. Lucanus, and
D. Inamdar (2018). Estimating peatland water table depth
and net ecosystem exchange: A comparison between
satellite and airborne imagery. Remote Sensing 10(5),
687.

Liang, H., M. Zhang, and H. Wang (2019). A neural network
model for wildfire scale prediction using meteorological
factors. IEEE Access 7, 176746–176755.

Listyorini, T. and R. Rahim (2018). A prototype fire detec-
tion implemented using the internet of things and fuzzy
logic. World Trans. Eng. Technol. Educ 16(1), 42–46.

Lozhkin, V., D. Tarkhov, V. Timofeev, O. Lozhkina, and
A. Vasilyev (2016). Differential neural network approach
in information process for prediction of roadside air pol-
lution by peat fire. In IOP conference series: materials
science and engineering, Volume 158, pp. 012063. IOP
Publishing.



Prediction of Boreal Peatland Fires in Canada using Spatio-Temporal Methods

Mahdianpari, M., B. Salehi, M. Rezaee, F. Mohammadi-
manesh, and Y. Zhang (2018). Very deep convolutional
neural networks for complex land cover mapping using
multispectral remote sensing imagery. Remote Sens-
ing 10(7), 1119.

Markuzon, N. and S. Kolitz (2009). Data driven approach to
estimating fire danger from satellite images and weather
information. In 2009 ieee applied imagery pattern recog-
nition workshop (aipr 2009), pp. 1–7. IEEE.

Maulana, S. I., L. Syaufina, L. B. Prasetyo, and M. N. Aidi
(2019). Spatial logistic regression models for logistic
repression models for predicting peatland fire in bengkalis
regency, indonesia. Journal of Sustainability Science and
Management 14(3), 55–66.

Minasny, B., B. I. Setiawan, S. K. Saptomo, A. B. McBrat-
ney, et al. (2018). Open digital mapping as a cost-effective
method for mapping peat thickness and assessing the car-
bon stock of tropical peatlands. Geoderma 313, 25–40.

Mitsopoulos, I. and G. Mallinis (2017). A data-driven ap-
proach to assess large fire size generation in greece. Nat-
ural Hazards 88(3), 1591–1607.

Radke, D., A. Hessler, and D. Ellsworth (2019). Firecast:
Leveraging deep learning to predict wildfire spread. In
IJCAI, pp. 4575–4581.

Ronneberger, O., P. Fischer, and T. Brox (2015). U-net:
Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image
computing and computer-assisted intervention, pp. 234–
241. Springer.

Service, C. F. Canadian national fire database – agency
fire data. Natural Resources Canada, Canadian Forest
Service, Northern Forestry Centre, Edmonton, Alberta.

Service, C. F. National burned area composite (nbac). Natu-
ral Resources Canada, Canadian Forest Service, Northern
Forestry Centre, Edmonton, Alberta.

Shidik, G. F. and K. Mustofa (2014). Predicting size of for-
est fire using hybrid model. In Information and Commu-
nication Technology-EurAsia Conference, pp. 316–327.
Springer.

Sitanggang, I. S., R. Yaakob, N. Mustapha, and A. Ainuddin
(2014). A decision tree based on spatial relationships for
predicting hotspots in peatlands. Telkomnika 12(2), 511.

Subramanian, S. G. and M. Crowley (2017). Learning forest
wildfire dynamics from satellite images using reinforce-
ment learning. In Conference on reinforcement learning
and decision making.

Tarnocai, C., I. M. Kettles, and B. Lacelle (2011a). Peat-
lands of Canada. Geological Survey of Canada.

Tarnocai, C., I. M. Kettles, and B. Lacelle (2011b). Soil Or-
ganic Carbon Content of Canadian Peatlands. Geological
Survey of Canada.

Tarnocai, C., I. M. Kettles, and B. Lacelle (2011c). Soil
Organic Carbon Mass of Canadian Peatlands. Geological
Survey of Canada.

Thompson, D. (2020, July). Peatland fires and carbon emis-
sions.

Turetsky, M. R., B. Benscoter, S. Page, G. Rein, G. R. Van
Der Werf, and A. Watts (2015). Global vulnerability of
peatlands to fire and carbon loss. Nature Geoscience 8(1),
11–14.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin (2017). Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008.

Widyatmanti, W., D. Umarhadi, M. Ningam, Z. Sarah,
K. Nugroho, Y. Sulaeman, et al. (2019). Mapping acid
sulfate soil hydrogeomorphical unit on the peatland land-
scape using a hybrid remote sensing approach. In Tropi-
cal Wetlands-Innovation in Mapping and Management:
Proceedings of the International Workshop on Tropical
Wetlands: Innovation in Mapping and Management, Oc-
tober 19-20, 2018, Banjarmasin, Indonesia, pp. 30. CRC
Press.

Zheng, Z., W. Huang, S. Li, and Y. Zeng (2017). Forest fire
spread simulating model using cellular automaton with
extreme learning machine. Ecological Modelling 348,
33–43.



Prediction of Boreal Peatland Fires in Canada using Spatio-Temporal Methods

Appendix I: Previous Work
Forest and Urban Fire Prediction

Fire behavior prediction methods generally focus on predict-
ing growth and spread or predicting final severity. In order
to predict severity, many models use metrics such as final
burned area or duration of burn. Using the former assumes
severity increases when more land is burned, and using the
latter assume severity increases the longer the fire lasts.

Common fire behavior prediction methods are regression
(Castelli et al., 2015; Cortez and Morais, 2007; Mitsopoulos
and Mallinis, 2017), random forests (Markuzon and Kolitz,
2009; Mitsopoulos and Mallinis, 2017), support vector ma-
chines (Castelli et al., 2015; Cortez and Morais, 2007), or
Bayesian networks (Markuzon and Kolitz, 2009).

Researchers have traditionally formulated the fire prediction
problem as a classification problem. The highest accuracy
among these models is 97.5% and is achieved by Shidik
and Mustofa (2014). Similar research achieves far lower
accuracy (Coffield et al., 2019; Mitsopoulos and Mallinis,
2017). However, these lower-accuracy works create classes
based upon the ground-truth burned area size instead of
clusters on the covariates as done by Shidik and Mustofa
(2014).

While few works have explicitly accounted for temporal
information, Liang et al. (2019) compare a recurrent neural
network (RNN) and an LSTM to predict a numerical custom
fire severity metric. Their results indicate that the LSTM
outperforms the RNN, motivating our use of an LSTM. In
addition, they discuss that meteorological covariates, which
they use, are associated with fire severity. These features
may therefore be worth considering in the peat fire detection
and prediction problem as well.

However, a two-dimensional map of predicted fire perime-
ters is easier for researchers, policymakers, and fire agencies
to analyze and use. Recently, deep learning methods such
as reinforcement learning, CNNs, and graph neural network
(GNN) models have gained more attention in mapping fire
spread.

Reinforcement learning models produce predicted fire
perimeters by viewing the fire as an agent and modelling
actions the agent is likely to take (Zheng et al., 2017; Sub-
ramanian and Crowley, 2017; Ganapathi Subramanian and
Crowley, 2018). Typically, the fire is modelled so it can
only move to nearby areas in a timestep. However, this
formulation of the problem does not apply in the context of
peatland fires since fires are no longer limited to spreading
to the areas around them. Peat fires can go underground
and resurface elsewhere, which is parallel to a delayed jump
action for a fire agent. As such, traditional reinforcement
learning algorithms would have to be altered in order to

function for peatlands.

The current state-of-the-art machine learning algorithms
for forest fire prediction use convolutional neural networks
(CNN) (Hodges et al., 2019; Radke et al., 2019). Hodges
et al. (2019) to predict future burn perimeters based on six-
hourly burn maps generated by the FARSITE physics-based
simulator. Radke et al. (2019) attempts to use a similar
CNN architecture named FireCast based on daily observed
fire perimeters from GEOMAC instead of simulation burns.
FireCast is able to outperform FARSITE, which establishes
some of the limitations of using simulated burns for train-
ing as compared to observed data. FireCast’s performance
emphasizes recall over precision with very high recall per-
centages but very low precision.

Few works take into account abnormally shaped spatial in-
formation for fire prediction. However, Jin et al. (2020) uses
graph-convolutional layers in a custom architecture, USFP-
Net. The USFP-Net uses a graph convolutional neural net-
work, CNN layers and RNNs to model the fire prediction
problem. USFP-Net outperforms many other common archi-
tectures for urban fire prediction. They represent the area as
a graph with edges with weights inversely proportional to the
distance between them, resulting in a fully connected graph.
Training such a network would require a long time, and it is
likely computationally infeasible to use this model/replicate
such results over larger areas. In addition, the model only
accounts for the usual spatial and temporal characteristics
of an area without taking into account fire spread patterns.

Peatland Studies

We have surveyed literature within the general peatland do-
main that is potentially relevant to the problem of peatland
fire prediction. Many problems arise in characterizing the
peatland biome. First, it can be difficult to determine which
land is peatland. DeLancey et al. (2019) predict where peat-
lands exist by using machine learning and boosted decision
trees. Mahdianpari et al. (2018) classify wetlands as being
peat-based or not by using a convolutional neural network
model. Second, the peatlands have various characteristics
that might be useful as covariates in fire prediction. Prior
work on these elements focus on identifying the type of
peatlands (Bourgeau-Chavez et al., 2017), the amount of
sequestered carbon stored in the peat (Minasny et al., 2018),
peatlands affected by permafrost (Hugelius et al., 2020), the
acidity of the peatlands (Widyatmanti et al., 2019), identify-
ing human draining around peatlands (Connolly and Holden,
2017), or the water table depth of the peatlands (Kalacska
et al., 2018) using various remote-sensing datasets, statisti-
cal methods, or basic machine learning models.
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Peatland Fire Prediction

Within the peatlands domain, there has only been a handful
of studies in fire prediction, and far fewer that leverage
deep-learning methods.

Honma et al. (2016); Listyorini and Rahim (2018) use a
system of detectors near a specific peatland to predict fire
spread. Bourgeau-Chavez et al. (2020a) perform a review
of four fires in peatlands to determine how the type of a
peatland affects its likelihood of burning (Bourgeau-Chavez
et al., 2020b). However, these works have limited scalability
since they are either restricted to areas in which they can
establish a detection system or are restricted to post-event
analysis.

Sitanggang et al. (2014) apply decision trees to determine
active fire area, with their best model reaching an accuracy
of 71.66%. However, this model does not perform any
forward predictions; it predicts MODIS hot spots based
upon the conditions of that very day. This work therefore
shows that hot spots can be correlated with various climate
and landscape information such as soil moisture, vegetation
type, and precipitation.

Maulana et al. (2019) use logistic regression to predict ac-
tive fire areas up to three months in advance, achieving an
accuracy of 85.16%. The authors average climate and land-
scape conditions for four months to predict MODIS fire hot
spots aggregated for one month.

Lozhkin et al. (2016) use a differential neural network model
to predict carbon monoxide dispersion from peat fires near
highways. This research suggests the ability of neural net-
works to capture peat emissions patterns.

Appendix II: Dataset
Feature Processing: The time range of our dataset is from
January 20, 2012 to December 31, 2018, which is the in-
tersection of the available time ranges for the different fea-
tures. We use the following South/North/West/East coor-
dinates to bound the map for each feature: -141.0000°/-
50.0000°/41.7500°/90.0000°. The maps are explicitly
projected to WGS84 (EPSG: 4326), the standard longi-
tude/latitude coordinate system. As each dataset has a differ-
ent spatial resolution, they are all scaled to have a resolution
of 0.1° x 0.1° longitude/latitude per pixel, such that each
feature at a timestamp has dimensions of 483 by 910 pixels.
We take timestamps per day. For features with a sub-daily
resolution, we take the average over sub-daily data points.
For features that do not change over time, such as TOCC
from the Tarnocai dataset, we simply reuse the same data
for each timestamp.

Additional Predicted Feature Processing: For prediction,
we mask the predicted features, fire occurrence or CO2 emis-

sions, with the Tarnocai Peatland shapefiles to get only the
values over peatlands; we do not do this for the covariates.
A polygon in the Tarnocai Peatland Map is considered to be
peatland if it has at least 10% peatland cover as specified
by PEATLAND P. A polygon in CWFIS is considered to
be burned if it is estimated 100% burned as given by the
BURNCLAS feature.

We list features we considered interesting from the following
datasets, whether they were eventually used or not.

1. Tarnocai Peatland Map (Tarnocai et al.,
2011a)(Tarnocai et al., 2011b)(Tarnocai et al.,
2011c)
A set of shapefiles capturing where the peatlands are,
what type (bog, fen, swamp marsh) they are, and
how much carbon they store. The data was gathered
through survey and published by National Resources
Canada.

(a) Spatial Range: Canada
(b) Variables:

i. Peatland (%) (PEATLAND P): Percentage of
shapefile polygon covered in peatland.

ii. BOG PCT: Percentage of shapefile polygon
covered in bog.

iii. FEN PCT: Percentage of shapefile polygon
covered in fen.

iv. SWAMP PCT: Percentage of shapefile poly-
gon covered in swap.

v. MARSH PCT: Percentage of shapefile poly-
gon covered in marsh.

vi. TOCC: The average amount of carbon stored
per surface area (kg/m2) for the shapefile poly-
gon (uses peat depth).

2. Canadian Wildland Fire Information System (CWFIS)
(Service, b)(Service, a)
Shapefiles indicating where fires occurred and their
burned areas. Data on fires was collected through sur-
vey by Canadian fire management agencies. Data on
burned area was calculated through a combination of
survey data, aerial photography, and satellite data, such
as from through MODIS, VIIRS, Landsat, and Sentinel-
2.

(a) Spatial Range: Canada
(b) Temporal Resolution: Daily
(c) Temporal Range: ¡ January 2000 - January 2019
(d) Variables:

i. BURNCLAS: Proportion of land burned for
shapefile polygon. 1: estimated 25% burned,
2: estimated 50% burned, 3: estimated 75%
burned, 4: estimated 100% burned.

https://geoscan.nrcan.gc.ca/starweb/geoscan/servlet.starweb?path=geoscan/fulle.web&search1=R=288786
https://cwfis.cfs.nrcan.gc.ca/datamart
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Features Dataset Spatial Resolution Temporal Resolution
BURNCLASS CWFIS variable daily

height i (for i in [0, 10)) CarbonTracker (Global) 3°x 2° 3-hourly
fire flux CarbonTracker (Flux) 1°x 1° 3-hourly
fuel flux CarbonTracker (Flux) 1°x 1° 3-hourly

frp VIIRS 375m x 375m daily
confidence VIIRS 375m x 375m daily
bright ti4 VIIRS 375m x 375m daily

TOCC Tarnocai Peatland Map variable fixed
swvli (for i in [1, 4]) ERA5 0.1° x 0.1° hourly
stli (for i in [1, 4]) ERA5 0.1° x 0.1° hourly

lai hv ERA5 0.1° x 0.1° hourly
lai lv ERA5 0.1° x 0.1° hourly
tp ERA5 0.1° x 0.1° hourly
t2m ERA5 0.1° x 0.1° hourly
u10 ERA5 0.1° x 0.1° hourly
v10 ERA5 0.1° x 0.1° hourly

Table 2. Covariate features used for the prediction of fire. Datasets are presented along with the relevant covariate features, spatial
resolution, and temporal resolution. Spatial resolution indicated with degrees is given by longitude/latitude.

ii. Fire: Shapefile polygons outlining fires.

3. VIIRS
Location of hot spots, which are thermal anomalies
that often indicate fire. The data is gathered by the
VIIRS sensor, onboard the Suomi NPP and NOAA-20
polar-orbiting satellites.

(a) Spatial Range: Global
(b) Spatial Resolution: 375m x 375m
(c) Temporal Range: January 2012 - present
(d) Temporal Resolution: Daily
(e) Variables:

i. frp: Fire radiative power, megawatts.
ii. confidence: Confidence of individual hot

spots. 0: low, 1: nominal, 2: high.
iii. bright ti4: Fire pixel channel I4 bright-

ness temperature (Kelvin).

4. Global Monitoring Laboratory Carbon Tracker
CT2019 Globe (A. R. Jacobson, 2020)

(a) Spatial range: Global (NOTE: During winter time,
high latitude regions are not reliable.)

(b) Spatial resolution: 3° longitude x 2° latitude
(c) Temporal Range : January 2000 - present
(d) Temporal Resolution: 3-hourly
(e) Variables:

i. height i, for i ∈ [0, 10): CO2 molar den-
sity at 10 different height levels above the
ground. Refer to Table 1 in Section 6.1 on

their documentation for the actual heights in
meters.

5. Global Monitoring Laboratory Carbon Tracker
CT2019 Flux (A. R. Jacobson, 2020)

(a) Spatial range: Global (NOTE: During winter time,
high latitude regions are not reliable.)

(b) Spatial resolution: 1° x 1°
(c) Temporal Range: January 2000 - present
(d) Temporal Resolution: 3-hourly
(e) Variables:

i. fire flux: Flux of CO2 attributed to fire.
ii. fuel flux: Flux of CO2 attributed to burn-

ing fossil fuel.

6. ERA5 (Hersbach et al., 2020)
The standard dataset on weather variables, such as
pertaining to soil, precipitation, temperature, and wind.
The data is an assimilation between observations and
modelling of climate.

(a) Spatial Resolution: 9km x 9km regridded for 0.1°
x 0.1°

(b) Temporal Resolution: hourly
(c) Temporal Range: January 1981 - 3 months before

present
(d) Variables:

i. swvl1: Soil water level 1. Meters-cubed
water in meters-cubed soil at a depth of 0 - 7
cm from surface.

https://firms.modaps.eosdis.nasa.gov/download/
ftp://aftp.cmdl.noaa.gov/products/carbontracker/co2
ftp://aftp.cmdl.noaa.gov/products/carbontracker/co2
https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2019B_doc.php#tth_sEc10
ftp://aftp.cmdl.noaa.gov/products/carbontracker/co2
ftp://aftp.cmdl.noaa.gov/products/carbontracker/co2
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
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ii. swvl2: Soil water level 2. Meters-cubed
water in meters-cubed soil at a depth of 7 - 28
cm from surface.

iii. swvl3: Soil water level 3. Meters-cubed
water in meters-cubed soil at a depth of 28 -
100 cm from surface.

iv. swvl4: Soil water level 4. Meters-cubed
water in meters-cubed soil at a depth of 100 -
289 cm from surface.

v. stl1: Soil temperature level 1. Temperature
of soil in Kelvins at a depth of 0 - 7 cm from
surface.

vi. stl2: Soil temperature level 2. Temperature
of soil in Kelvins at a depth of 7 - 28 cm from
surface.

vii. stl3: Soil temperature level 3. Temperature
of soil in Kelvins at a depth of 28 - 100 cm
from surface.

viii. stl4: Soil temperature level 4. Temperature
of soil in Kelvins at a depth of 100 - 289 cm
from surface.

ix. lai hv: Leaf area index, low vegetation.
Surface area of low-lying leaves in meters-
squared over area over area land in meters-
squared. Characterizes the density of low veg-
etation such as crops, marshes, grasses, bogs.

x. lai lv: Leaf area index, high vegetation.
Surface area of high-reaching leaves in meters-
squared over area land in meters-squared.
Characterizes the density of high vegetation
such as forests and trees.

xi. tp: Total precipitation. Total amount of water
accumulated over an hour. Given as the depth
in meters the water would have been if spread
evenly over the spatial unit. CAUTION: This
variable is an aggregation and not an average,
so its value describes a very specific space and
time.

xii. t2m: 2-meter temperature. Temperature (K)
two meters above the surface.

xiii. u10: East-ward component of wind. Positive-
x component of speed (m/s) of wind ten-
meters above surface.

xiv. v10: North-ward component of wind.
Positive-y component of speed (m/s) of wind
ten-meters above surface.


