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ABSTRACT 
Dengue fever is one of the most common and rapidly spreading arboviral diseases in the world, with major public health and 

economic consequences in tropical and sub-tropical regions. Countries such as Peru, 17.143 cases of dengue were reported 

in 2019, where 81.4% of cases concentrated in five of the 25 departments. When predicting infectious disease outbreaks, it 

is crucial to model the long-term dependency in time series data. However, this is challenging when performed on a 

countrywide level since dengue incidence varies across administrative areas. Therefore, this study developed and applied a 

climate-based ensemble model using multiple machine learning (ML) approaches to forecast dengue incidence rate (DIR) by 

department. The ensemble combined the outputs from Long Short-Term Memory (LSTM) recurrent neural network and 

Categorical Boosting (CatBoost) methods to predict DIR one month ahead for each department in Peru. Monthly dengue 

cases stratified by Peruvian departments were analysed in conjunction with associated demographic, geographic, and 

satellite-based meteorological data for the period January 2010–December 2019. The results demonstrated that the ensemble 

model was able to forecast DIR in low-transmission departments, while the model was less able to detect sudden DIR peaks 

in some departments. Air temperature and wind components demonstrated to be the significant predictors for DIR predictions. 

This dengue forecast model is timely and can help local governments to implement effective control measures and mitigate 

the effects of the disease. This study advances the state-of-the-art of climate services for the public health sector, by informing 

what are the key climate factors responsible for triggering dengue transmission. Finally, this project summarises how 

important it is to perform collaborative work with complementary expertise from intergovernmental organizations and public 

health universities to advance knowledge and address societal challenges.  

1. Introduction  

Dengue is a mosquito-borne viral infection mostly found in urban and peri-urban areas located in warm and tropical climate 

regions. The World Health Organization (WHO) reported that the global burden of dengue increased eight-fold over the last 

two decades1. This increase has been partly attributed to globalisation, climate change and urbanisation, but can also be 

explained by the improvement in local policies to record and report dengue cases to national (Ministry of Health) and 

international (WHO) related agencies1. However, most dengue infections are asymptomatic cases or misdiagnosed as other 

febrile illnesses, resulting in under-reporting2. Peru is a Latin American country particularly affected by dengue and according 

to the epidemiological alerts issued by the Peruvian Ministry of Health, all four dengue serotypes (DENV 1-4) are in 

circulation3,4. In 2019, 17.143 cases of dengue (37 deaths) were reported in Peru, representing a 243% increase compared with 

20185. The dengue incidence rate (DIR) by age group was reported as 34.18% for children and adolescents (0-17 years old), 

24.88% for adults between 18 and 29-year-olds, 34.60% for 30 to 59-year-olds, and 6.68% adults over 60-years-old (6.68%)5. 

Since dengue is a climate-sensitive disease, temperature and rainfall variations influence the magnitude and seasonality of 

dengue transmission6,7. To date, there is no specific antiviral treatment for dengue, or a national mass dengue testing campaign 

to limit dengue transmission8. Therefore, determining the association between weather patterns and the surge of dengue cases 

is an important policy measure for an early response to future outbreaks. 



 

 

In recent years, the adoption of machine learning (ML) techniques to perform Earth Observation (EO) classification and 

regression tasks9,10 have substantially increased thanks to their ability to model any kind of predictor(s)-response association 

and to appropriately capture complex spatio-temporal relationships11. Several studies in the literature implemented different 

regression methods to forecast dengue cases across the globe12–16, and a few used a single machine learning (ML) architecture15–

17 but none explored an ensemble model of multiple-ML approaches. The importance of exploring an ensemble multiple-ML 

models is because the dengue incidence rate (DIR) varies widely across different national administrative areas. Therefore, it 

becomes a difficult task for a single-ML model to fully capture the countrywide behaviour. For example, Figure A1 (in the 

Appendix) displays the DIR over 25 Peruvian departments. There is high DIR heterogeneity across the country, demonstrating 

departments with a typically low (e.g., Tacna and Moquegua), seasonal (e.g. Lambayeque and La Libertad), or year-round 

dengue incidence (e.g. Madre de Dios and Loreto).   

The novelty of this work is threefold: (i) assess the benefits of new environmental data from satellite and satellite-based products 

to forecast DIR, (ii) introduce an innovative methodological ensemble approach to predict DIR one month ahead for each 

Peruvian department, and (iii) bring the most recent evidence on the climate factors that impact the dengue transmission in Peru, 

since this study found the last related publication covering up to the 2010 period4. The ensemble ML forecast model was 

designed, developed, and applied by the European Space Agency’s scientific team according to the needs described by UNICEF 

Office of Innovations and UNICEF Latin America and Caribbean Regional Office. The outcome of this project is twofold: (i) 

provide a climate-based ML model to forecast DIR in Peru and (ii) develop a reproducible workflow, presented as a cookbook 

(i.e., all processes are explained step-by-step, from data collection to model validation), where UNICEF in support of national 

governments can construct, test, validate and implement a working forecast model for other dengue-endemic countries.  

2. Data and Methods  

2.1 Study area and dengue data 

Peru is a highly urbanized country situated on the central western coast of South America facing the Pacific Ocean, with a land 

size of about 1.28 million km2. As of 2020, the country accommodates a population of around 32.6 million with about 34.8%, 

54.3%, and 10.9% inhabitants between the age groups 0-19, 20-59, and 60-80+, respectively18. Peru has a diverse geography, 

comprising a western coastal plain, the Andes mountains, and the eastern tropical Amazon rainforest. The climate conditions 

range from moderate temperatures and low precipitation along the coast, heavy rainfall and high temperatures in the Amazon, 

and temperate up to cool temperatures in the Andes mountain range.  

This study used the largest Peruvian administrative level (i.e. departments) to group monthly dengue cases from 2010 to 2019 

provided by the Department of Epidemiology of Peru's Ministry of Health19. The number of cases by department was converted 

into dengue incidence rate (DIR) per 100.000 population. Population data by department for the same period was obtained from 

the National Institute of Statistics and Informatics of Peru (INEI)18.   

2.2 Satellite and satellite-based products 

Three land products were obtained from EO satellites. Firstly, the monthly Normalised Difference Vegetation Index (NDVI) 

was used to indicate vegetation cover and health20. The NDVI (MOD09GA Version 621) was calculated from the Moderate 

Imaging Spectroradiometer (MODIS) sensor onboard the Terra satellite. Global Forest Change22 (version 1.8) was the second 

product explored, retrieved from Landsat 7 and Landsat 8 satellites, representing the percentage of annual forest loss. Finally, 

a digital elevation product obtained from the Shuttle Radar Topography Mission23 (version 4) was used to obtain the mean 

altitude. Seven satellite-based meteorological variables were selected from the ERA 5 global reanalysis dataset provided by 

Copernicus Climate Change Service (C3S)24. Daily ERA 5 products collected for this study were: 2m height air temperature, 

dewpoint temperature, total precipitation, sea level pressure, surface pressure, 10m u- and v- components of wind. The grid 

cells from all variables were grouped by department through a geometric intersection tool. Monthly averages per department 

for each variable were computed from January 2010 to December 2019. The minimum and maximum values for 2m height air 

temperature were also computed, as well as latitude and longitude from each department’s centroid to be used as a spatial proxy. 

All data was obtained from the Google Earth Engine25 and the data was manipulated using Python26. 

2.3 Ensemble machine learning approach 

An ensemble ML approach was developed to forecast DIR one month ahead for each Peruvian department. The two supervised 

ML regression models involved are: (i) a deep learning model, called LSTM (Long Short-Term Memory)27 and (ii) a tree-based 

ML design, called CatBoost (Categorical Boosting)28. LSTMs are well known for their ability to process the input data as a 

sequence of values with a short- and long-term memory of past inputs, while boosting models like CatBoost are well-known for 

their capacity to deal with learning problems based on heterogeneous features, noisy data, and complex dependencies. Figure 1 

displays the ensemble framework, where each ML architecture runs in parallel using the same list of predictors (input X) and 



 

 

the outcome variable (referred here as ground-truth y). The LSTM-based model is composed of three LSTM layers, with 

decreasing size of parameters and three fully connected layers. Each LSTM layer is responsible for the extraction of temporal 

features from the input data, while the fully connected part is responsible for the forecast. The CatBoost model is based on the 

gradient boosting approach, which is essentially a process of constructing an ensemble predictor as a combination of weaker 

models (base predictors) by performing gradient descent in a functional space. The proposed ensemble model of multiple-ML 

is based on the late data fusion paradigm, where the output of two models is averaged to calculate the final prediction. The 

LSTM and CatBoost were trained using X and y variables from all departments combined. The department ID was included as 

a predictor, enabling the models to provide a unique DIR forecast for each department.    

The full dataset was divided into two sub-datasets: 2010-2017 training/testing set, referred to here as (𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛) and 2018-

2019 validation set, referred as (𝑋𝑣𝑎𝑙 , 𝑦𝑣𝑎𝑙). Random 𝑋𝑡𝑟𝑎𝑖𝑛 samples were used as feedforward input during the training. The 

internal weights of both models were adjusted based on mean absolute error (MAE) loss and its gradient, used to compare the 

model output (i.e., forecasted DIR) with 𝑦𝑡𝑟𝑎𝑖𝑛(i.e. observed DIR). This study implemented a sliding window method, known 

as a backtesting strategy, where the train-test pair was composed of seven-one months. Therefore, the training/testing sets are 

now fully represented by (𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛) ∈ 𝑅(𝑀,𝑁,𝑃), 𝑅(𝑀) and the validation set, by (𝑋𝑣𝑎𝑙 , 𝑦𝑣𝑎𝑙) ∈ 𝑅(𝐾,𝑁,𝑃), 𝑅(𝐾); where N is the 

number of months (i.e. seven) in the train of train-test pair, P represents the number of predictors, M, and K are described in 

Equation 1: 

𝑀 𝑜𝑟 𝐾 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝑠 𝑥 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑛𝑡ℎ𝑠 [𝑖𝑛 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙]  −  𝑁) Equation 1 

where, 𝑀depends on the number of departments, the size in months of the training/testing (2010-2017) set, and N. K depends 

on the number of departments, the size in months of the validation (2018-2019) set, and N. Once trained, the LSTM and CatBoost 

algorithms were applied in the validation set, and a measure of performance was generated by computing the root mean square 

error (RMSE). To be able to compare the RMSE values between departments, a min-max normalization was applied at the 

department level. In this way, each variable of each department had a maximized dynamics ranging from 0 to 1. The 

normalization parameters have been saved to restore later the original range. 

   

Figure 1. LSTM and CatBoost models framework. 

3 Results and discussion 

The dataset included 281.264 dengue cases reported between 2010 and 2019 in 25 departments in Peru (Figure A1, in the 

Appendix). The national DIR reported in 2019 was 52.66 cases per 100.000 population, which was 90 times greater in Madre 

de Dios department and 8, 5, and 2 times greater in Tumbes, Loreto, and Ucayali respectively. Madre de Dios is the third-largest 

department in Peru but the least populated, located almost entirely in the low-lying Amazon rainforest. Excluding Madre de 

Dios, all departments within the top five highest DIR were found in the north, where the minimum Tmean does not go below 

17°C (Figure A2). This study explored the most relevant environmental factors reported in the literature12,29,30 that influence 

dengue transmission. Comparing Figure A1 with Figure A3 showed that high altitude is a clear environmental factor responsible 

for lowering the temperature and consequently reducing DIR in departments located along the Andes mountain range. On the 

contrary, departments located in the Amazon rainforest (i.e., Loreto, Amazonas, San Martin, Ucayali, and Madre de Dios) had 

a high dengue persistence year-round with punctuated dengue outbreaks during the rainy season (November-April). Therefore, 

this study grouped the departments by three transmission types: (i) low (e.g., Lima, Apurimac, and Tacna), (ii) seasonal (e.g., 

Lambayeque, La Libertad, and Ancash), and (iii) year-round (e.g., Loreto, San Martin, and Madre de Dios). Chowell et al.4 also 

grouped Peruvian provinces based on a similar stratification, which they named as jungle, coastal, and mountain regions. They 

aimed to investigate the relationship between dengue incidence and climate factors during 1994-2008 and their results showed 



 

 

that the jungle region (in this study named as a year-round group) is responsible for multiple dengue introductions into coastal 

areas (i.e., seasonal group) since their favourable environmental conditions promote constant mosquito breeding sites. 

During the training of the CatBoost model, the importance of each predictor was assessed. This process identified what were 

the most influential variables to predict DIR for each train-test pair. As expected for a forecast model, the most important 

variable was DIR from the previous months. Following the DIR, CatBoost model ranked maximum, minimum, and mean air 

temperature as well as the wind components (speed and direction) as the most important variables. Air temperature is a well-

know highly ranked variable but wind component has been recently reported by the literature31. The high variation in DIR across 

departments motivated this study to propose an ensemble-based forecast model since a single-learner would not be able to 

explain this complex heterogeneity in spatial-temporal dynamics of dengue transmission. Table 1 displays the results of LSTM, 

CatBoost, and the ensemble models for three departments that represent each group (full table in the appendix, Table A1). Some 

departments (e.g., Lambayeque) demonstrated a coherence between LSTM and CatBoost forecast performance; however, the 

benefit in applying a hybrid approach is also to control overfitting. For example, for Lima, by taking the average of both models' 

results to compute the final forecasted DIR, the ensemble penalised any potential single-model overfit. Note, the ensemble did 

not self-adjust to provide good performance only to a specific transmission type. Higher RMSE results found in some 

departments (e.g. Tumbes) might be attributable to additional characteristics of dengue transmission that were not accounted in 

the models, entomological surveillance data (geographical distribution and density of the vector population)32 and socio-

economic data (e.g. proportion of dwellings with electric lighting, running water, and hygienic services)2,30. Figure A4 displays 

three plots showing monthly DIR predictions during 2018-2019 generated by the three models (LSTM, CatBoost, and ensemble) 

and y (ground truth) for three department types (low, seasonal, and endemic). In departments with low DIR, the models were 

able to forecast well without overestimating the dengue incidence. Regarding seasonal and endemic departments, the plots 

showed a good ability to generalize and forecast in many situations. 

This study also faced some limitations that must be acknowledged, for example, the very high peaks in specific months for 

Madre de Dios’ DIR were not well captured by the models since these unique outbreak values were not recorded by any other 

department. This phenomenon was expected since the models did not have sufficient samples to learn this type of dynamics and 

therefore the prediction turned out to be lower. Therefore, future directions for this project are pointing to the exploration of 

weekly data to mitigate high peaks of DIR to improve the modelling performance. 

Table 1. LSTM, CatBoost, and ensemble models’ performance for three departments. The RMSE metric describes the 

models’ error, expressed by the normalised DIR to allow comparison between departments. 

Dengue transmission type Department LSTM RMSE CatBoost RMSE Ensemble RMSE 

Low transmission Lima 0.243 0.357 0.298 

Seasonal transmission Lambayeque 0.244 0.241 0.242 

Year-round transmission Madre de Dios 0.218 0.208 0.212 

4 Conclusion  

Dengue control and prevention is a challenging task and must be performed via multiple levels of coordinated response (i.e., 

global and local). This study explored artificial intelligence technologies together with the latest advances from EO satellites 

and satellite-based products to forecast one-month DIR across 25 departments in Peru, chosen as a pilot country for the analysis. 

This study had a truly public health purpose since the project was a cooperation between ESA and UNICEF with the mission 

to provide knowledge and awareness about the impact of climate factors on dengue transmission that could be basis for dengue 

prevention and mitigation policies. The study identified that departments located at higher altitudes kept the weather less 

favourable to dengue transmission, while proximity to the Amazon rainforest has a significant influence to keep some 

departments in an endemic scenario. The findings also showed that there is a strong heterogeneity between departments in Peru; 

therefore, an ensemble-ML approach allows us to capture the transmission dynamics of dengue across three groups: low, 

seasonal, and year-round transmissions. The ensemble model demonstrated good accuracy across all groups, but some 

departments still need information beyond environmental factors, such as entomological surveillance data and socio-economic 

data to better describe the spatio-temporal DIR patterns. The increase of temperature due to climate change will make more 

departments prone to dengue outbreaks33 which might increase the number of endemic departments responsible for importing 

cases to the other regions. Therefore, policy measures should strengthen the government response actions to adapt and control 

the increasing risk of recurrent outbreaks in new areas.  

Finally, UNICEF's interest is to generate evidence on the correlation between climate change and dengue with the intention of 

influencing the improvement of health services and systems and children's health levels. Therefore, the next steps of this project 

is to subset the methodological approach to focus on children (i.e., 0-19 years old) since they are more vulnerable to suffer from 

severe dengue cases34,35.     
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Appendix 

  

Figure A1. Spatial and temporal variation in dengue incidence rate (DIR) (per 100.000 people) in Peru by department. 

Dengue records for Ayacucho and Ica departments were only available from 2014 and 2015, respectively. 



 

 

 
Figure A2. Monthly mean 2m height air temperature (2010-

2019) by department. 

 
Figure A3. Mean altitude by department. 

 

 

Figure A4. LSTM, CatBoost, and the ensemble models predictions for a year-round (top), seasonal (middle), and a low 

transmission (bottom) department type. 

 

 

 

 

 

 



 

 

Table A1. LSTM, CatBoost, and ensemble models’ performance for all departments. The RMSE metric describes the models’ 

error, expressed by the normalised DIR to allow comparison between departments. 

 

Department LSTM 

RMSE 

CatBoost 

RMSE 

Ensemble 

RMSE 

Amazonas 0.264 0.274 0.269 

Ancash 0.243 0.234 0.239 

Apurimac 0.033 0.006 0.018 

Arequipa 0.014 0.004 0.008 

Ayacucho 0.256 0.219 0.238 

Cajamarca 0.219 0.238 0.229 

Callao 0.028 0.024 0.020 

Cusco 0.299 0.322 0.307 

Huancavelica 0.009 0.005 0.006 

Huanuco 0.297 0.304 0.299 

Ica 0.144 0.098 0.116 

Junin 0.214 0.229 0.219 

La Libertad 0.274 0.286 0.299 

Lambayeque 0.244 0.241 0.242 

Lima 0.243 0.357 0.298 

Loreto 0.299 0.291 0.294 

Madre De Dios 0.218 0.208 0.212 

Moquegua 0.249 0.246 0.247 

Pasco 0.194 0.207 0.200 

Piura 0.066 0.051 0.051 

Puno 0.206 0.214 0.210 

San Martin 0.249 0.259 0.253 

Tacna 0.002 0.004 0.002 

Tumbes 0.333 0.359 0.344 

Ucayali 0.158 0.134 0.144 

Overall 0.190 0.193 0.190 

 

 

 

 

 

 


