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Abstract

Ship-tracks are produced by ship exhaust inter-
acting with marine low clouds. They provide an
ideal lab for constraining a critical climate forc-
ing. However, no global survey of ship ship-tracks
has been made since its discovery 55 years ago,
which limits research progress. Here we present
the first global map of ship-tracks produced by ap-
plying deep segmentation models to large satellite
data. Our model generalizes well and is validated
against independent data. Large-scale ship-track
data are at the nexus of environmental policy, cli-
mate physics, and maritime shipping industry:
they can be used to study aerosol-cloud interac-
tions, the largest uncertainty source in climate
forcing; to evaluate compliance and impacts of
environmental policies; and to study the impact
of significant socioeconomic events on maritime
shipping. Based on twenty years of global data,
we show cloud physics responses in ship-tracks
strongly depend on the cloud regime. Inter-annual
fluctuation in ship-track frequency clearly reflects
international trade/economic trends. Emission
policies strongly affect the pattern of shipping
routes and ship-track occurrence. The combina-
tion of stricter fuel standard and the COVID-19
pandemic pushed global ship-track frequency to
the lowest level in the record. More applications
of our technique and data are envisioned such
as detecting illicit shipping activity and checking
policy compliance of individual ships.
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1. Introduction

Ship tracks appear as semi-linear features and were first
identified as “anomalous cloud lines” in satellite images
(Conover, 1966). They are frequently found within stra-
tus /stratocumulus cloud fields that are capped by moder-
ate to strong temperature and humidity inversions (Figure
1). Ship-tracks are produced by aerosols affecting cloud
physics: particles formed from ship exhaust increase droplet
concentration in clouds, resulting in smaller but more nu-
merous cloud droplets, and increase total reflected sunlight.
This effect is particularly evident for spectral bands in the
shortwave and midwave infared spectral regions, such as
2.1 and 3.7 pm bands (Platnick, 2003). Ship tracks are also
used to study the response of total cloud liquid water to
aerosols. Both effects, more numerous droplets and more
cloud liquid water, can lead to more reflected solar radiation
back to space, producing a cooling effect on the climate.

Figure 1. An example of a MODIS scene with multiple ship-tracks
visible. It is in the Northern Pacific south of Alaska. In this
example, ship-tracks are easily noted in the visible wavelength,
which is not the case in general. This is for illustration purpose.

This cooling effect, known as aerosol indirect forcing, is
a key climate driver. The aerosol indirect forcing is a re-
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sult of anthropogenic pollution in general affecting cloud
properties and changing reflected solar radiation. It remains
the most uncertain component of human-induced radiative
forcing to the climate and predicted future warming depends
sensitively on its magnitude (Stocker & et al., 2013). Ship
tracks provide ideal settings to study aerosol indirect ef-
fects because of the clear separation between dynamics and
aerosol effects and between control and perturbed clouds.
Cloud responses to aerosols from ship exhaust provide im-
portant observational constraints for estimating aerosol indi-
rect forcing.

Manual segmentation of ship-tracks is expensive and the
amount of data to process is large. A consequence is limited
ship-track samples for analysis while the aerosol indirect
effects depend sensitively on background conditions, which
requires large samples. For example, it has been 55 years
since the discovery of ship-tracks and no global maps of
ship-tracks have been produced. Research progress is thus
slowed.

Here we develop ensemble deep segmentation models to de-
tect ship-tracks automatically and demonstrate a connection
among environmental policy, climate physics and maritime
shipping activity through ship-tracks. In section 2, we dis-
cuss the data and method used to detect ship-tracks as well
as data for validation, environmental policy and maritime
shipping. In section 3, we present insights from analyzing
large amount of data. We conclude in section 4.

2. Data and Model
2.1. Data

We use radiance data measured by NASA’s Moderate Res-
olution Imaging Spectrometer(MODIS) as well as retried
cloud physics parameters such as cloud droplet size, cloud
optical depth and cloud fraction. The 2.1um reflectance
data are the input for the segmentation model because they
are most sensitive to perturbations in cloud droplet sizes
due to ship exhaust and they are not affected by emissions
from clouds themselves. We choose not to directly use
cloud droplet size retrievals because they are not available
everywhere. Three visible channels in red (0.65um), green
(0.55um;), and blue (0.464m) are used to classify individ-
ual 128pixel X128pixel MODIS scenes into different cloud
regimes (Yuan et al., 2020). The reflectance data are already
normalized to between 0 and 1.

Retrievals of cloud variables such as cloud droplet size and
cloud optical depth are used to analyze the cloud physics
changes in ship-tracks. Derived variables such as cloud total
liquid water and cloud top height as well as cloud fraction
are also used.

The ground truth for ship tracks is hard to find for satel-

lite data-based detection since in-situ measurements are
extremely rare. We can only rely on human inspection of
the original reflectance data, which is still not direct valida-
tion (Coakley & Walsh, 2002). Here we will use Automatic
Identification System (AIS) data collected by the US Coast
Guard to validate our detections. AIS data report real-time
data such as location and speed every 6 minutes and are
publicly available (https://marinecadastre.gov/ais/) for ships
near US coastal regions. They also have information such
as vessels size, draft, ship and cargo types.

We fine-tune the DeepLabV3 model with a ResNet50 back-
bone to train segmentation models. We explore different
loss functions and adopt an ensemble average of two models
as our final segmentation model (Chen et al., 2018). We
average predictions of two models that use BCE loss and
FocalLoss because they have complementary strengths and
weaknesses.

We build a training set by manually labeling MODIS data
with a quality control strategy. First, a new labeler learns to
find ship-tracks and label a small set of scenes. A supervi-
sor review the labels with the labeler and correct potential
mistakes. The process iterates until the supervisor finds few
mistakes in gradually increasing sizes of batches and the la-
beler then creates samples without supervision. We sample
different climate regimes and locations so that the model
can generalize. The quality of training data is critical as evi-
denced by the poor performance of our initial model when it
was trained on a training data mixed with low quality labels.

We developed a forward trajectory model to facilitate vali-
dating detected ship-tracks. The forward trajectory model
uses near-surface wind to advect ship exhaust based on
AIS data. The 1-hourly averaged 50-meter U and V wind
components are used. The 6-minute AIS ship location data
are down-sampled to the half-hourly. Each ship releases a
virtual exhaust parcel at every time step and the forward
trajectory model predicts their locations at a future time. We
then obtain an expected ship exhaust track at the MODIS
overpass time by connecting predicted locations of each
virtual parcel. These expected tracks is compared with the
model detected ship tracks for validation.

An example is shown in Figure 2. The AIS ship locations are
blue lines. Using the forward trajectory model we produce
“expected’ ship exhaust tracks (red). The actual ship-tracks
detected by the segmentation model is shown in green. For
most ship-tracks, there are exhaust tracks that closely match
them, except track 7. There is some mismatch between track
7 and the green ship-track, which may be due to imperfect
model winds. Nonetheless, many cases like this provide
strong validation for our model results.

Our model also generalize quite well. We give a few ex-
amples in Figure 3. In the first row, the manual ship track
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Figure 2. Model detected ship-tracks(green lines), actual AIS-
based ship trajectories (blue), and tracks of ship exhaust from
our trajectory model (red). Detected ship-tracks overlap with pro-
jected ship exhaust tracks quite well, validating our deep learning
model results. Note that not all tracks of ship exhaust become
ship-tracks since the region may not be cloudy or covered by the
right kind of clouds. Also, not all ships are capable of producing
ship-tracks even the cloud conditions are right.

is actually a false positive. In the second row, the models
pick out most manual labels and leave out the questionable
ones. Models and manual label agree well in the third row.
In the last example, the labeler clearly missed several true
positives while the models correctly detected them.
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Figure 3. Four examples of (left)MODIS 2.1um images, (second to
the left) manually labelled ship track masks (white pixels), (middle)
ship track masks from the ensemble average, (right two) ship track
masks from two models.

3. Results

3.1. The First Global Map

Figure 4 shows the first global map of ship-track distribu-
tions after we apply our ensemble model detection to one
year of MODIS data ( 10Tb). We want to underscore that
to form ship-tracks the right kind of low clouds need to
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Figure 4. Number of ship-track pixels in 2010.

be present and no overlapping high clouds are observed.
This explains the general lack of ship-tracks detected in the
lower latitudes despite significant shipping activity in re-
gions like tropical Indian Ocean and tropical Atlantic Ocean.
It also explains the relatively fewer ship-tracks in the North
Atlantic where high, storm clouds are frequently present.
Several major shipping lanes are nevertheless clearly de-
tected in our map: the busiest one connecting East Asia and
North America; the one off west coast of South America;
the North Atlantic shipping lane; several shipping routes
emanating from Cape Town; one to the South of Australia.
These regions all happen to be dominated by the right kind
of low cloud during some months of the year. These ship-
ping lanes agree with known shipping activities based on
global commercial AIS data (raw data not available for us,
only images).

3.2. Impact of Policy

International Maritime Organization set up four Emission
Control Areas (ECAs) in 2011. One of them is along the
west coast of Canada and US. Ships in ECAs have to obey
stricter fuel standards to reduce the emission of pollutants
such as sulfur oxides, nitrogen oxides, and volatile organic
compounds. The standards started to be enforced in 2013
for the ECA in the west coast of North America (Figure
5). Starting 2013, the number of ship-tracks within the
ECA decreased significantly. It went down further in 2019
when stricter emission standard was in effect. Not only
the number, but also pattern of shipping changed. After
2013, the ship lane outside of the ECA ’consolidated’” and
contracted to form a tight ’line’ instead of a more spread-out
blob before that. Also, there is evidence of ships moving
along the ECA edge and going straight towards major ports
like Los Angeles, San Francisco, and Seattle/Vancouver (e.g.
2018), which minimizes their time spent in the ECA.

3.3. Enable Studying Cloud Physics

With the ship-track segmentation model, we can sample or-
ders of magnitude more samples than before, which allows
analyzing cloud responses to aerosol particles in a more
nuanced way. Together with a cloud regime classification
algorithm, we collocated space-borne lidar and radar data
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Figure 5. Ship-track numbers in the Northeast Pacific in June and
July (peak season) between 2003-2020. The ECA is outlined in
solid(both black and yellow) lines.

together with the ship-track segmentation and analyze how
clouds respond under different cloud regimes. An example
is given in Figure 6. An important take-away message from
this analysis of the largest ship-track samples is that clouds
responses are quite sensitive to the background cloud regime.
For example, cloud fraction change is critical for aerosol
indirect forcing and strong increases in cloud fraction, i.e.
strong cooling effect, occur predominantly in three cloud
regimes while in other regimes, cloud fraction change is
minor. Same pattern occurs for the response of total liquid
water. Such divergent responses will help us to narrow down
uncertainties in aerosol indirect forcing studies. Our results
also have direct implications for cloud seeding geoengineer-
ing ideas since they help to target the right kind of clouds
for maximum efficiency.

ACTH [m ACTP [hPa]

= 04 I
\ 03
\ 02
\ 02
< 01 o1
] /]
I ——— 00 e

200 400

ACER [um]

-400 -200 0 ~400 200 200 400 -0  -1o 0 10

ACloud Fraction

acot ALWP [g/m2]

i

A

ISV
00] m—— <8 o~

-04 -02 00 02 04 06

Figure 6. Responses of cloud height, optical depth, droplet size,
total liquid water and cloud fraction to ship pollution under six
different cloud regimes. The vertical lines are population means
and shaded regions are standard deviation around the mean. The
legends in the upper right corner indicate the cloud regimes and
their sample sizes.

3.4. Socioeconomic Trends/Events

With almost two decades of global data, we can also use the
ship-track data to gauge the impact of major socioeconomic
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Figure 7. Percentage of low clouds that are affected by ship-tracks
in the Northern Pacific.

trends or events on maritime shipping. The northern Pacific
region is selected as an example here because it has the large
samples of ship-tracks and connects several major markets.
Examining the trend, it is noted that 2009/2009 financial
crisis only had minor effects on the shipping. The strong
increase in shipping from 2003 to about 2010 is mainly
driven by economic activities in exporting countries in Asia.
The 2015 local minimum is due to a severe downturn in
China’s economic growth and restriction of raw material
import from the Americas to China. The shipping activity
recovered after that quickly. The 2020 pandemic had a clear
impact on the shipping activity across the Pacific. In fact,
the 2020 is the global minimum during the whole record.

4. Conclusions

In this paper, we demonstrate the power of combining deep
learning models with space-borne data. We produce the first
global map of ship-tracks. Ship-track samples extracted by
deep learning models can enable various research topics
such as climate physics, impact of environmental policy,
and socioeconomic events and trends. There are further
application of our method in the future to explore. We
show that our ensemble model average approach generalizes
well. It is also worth noting that based on our experience
the quality of training data is critical for success of Al
application.
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