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Abstract
We explore machine learning methods for AC Op-
timal Powerflow (ACOPF) - the task of optimiz-
ing power generation in a transmission network
according while respecting physical and engineer-
ing constraints. We present two formulations of
ACOPF as a machine learning problem: 1) an end-
to-end prediction task where we directly predict
the optimal generator settings, and 2) a constraint
prediction task where we predict the set of active
constraints in the optimal solution. We validate
these approaches on two benchmark grids.

1. Introduction
The Optimal Power Flow problem (OPF) consists of deter-
mining the optimal operating levels for different generators
within a transmission network in order to meet the demand
that is changing over space and time. An established area of
research in both power systems and operations, OPF is ap-
plied every day in the management and regulation of power
grids around the world. In this work, we hope to obtain
real-time approximate solutions to the OPF problem using
machine learning.

The classical formulation of ACOPF (presented in Section
3) is a challenging non-convex and NP-hard problem (Bien-
stock & Verma, 2015). In addition to minimizing generator
costs, solutions must adhere to physical laws governing
power flow (i.e. Kirchhoff’s voltage law) and respect the
engineering limits of the grid. As a result, ACOPF is com-
putationally intractable under the demands of daily grid
management. In order to account for rapid fluctuations
in power demand and supply, grid operators must solve
ACOPF over the entire grid (comprising of tens of thou-
sands of nodes) every five minutes 1 (Cain et al., 2012).
Most traditional approaches (genetic algorithms, convex re-
laxations, etc) either fail to converge within this time frame
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or produce suboptimal solutions. In order to practically man-
age the grid, operators solve a linearized version of ACOPF
practice known as DC Optimal Power Flow (DCOPF). How-
ever, DCOPF presents a number of issues. True grid con-
ditions can deviate from the linear assumptions imposed
by DCOPF, increasing the likelihood of instability and grid
failure (Frank & Rebennack, 2016). Relying on DCOPF
also has significant implications for climate change. A 2012
report from the Federal Energy Regulatory Commission
estimated that the inefficiencies induced by approximate-
solution techniques may cost billions of dollars and release
unnecessary emissions (Cain et al., 2012). Determining an
efficent solution for ACOPF could also be adapted to com-
bined economic emission dispatch (CEED) - a variant of
OPF which incorporates a per-generator emissions cost into
the classic objective function (Venkatesh et al., 2003).

In this paper, we observe that it should be possible to learn
a model that can predict an accurate solution over a fixed
grid topology/constraint set. Intuitively, we expect some
measure of consistency in the solution space - similar load
distributions should correspond to similar generator settings.
This suggests an underlying structure to the ACOPF prob-
lem, which a machine learning model can exploit.

Machine learning present several advantages. Neural net-
works have demonstrated the ability to model extremely
complicated non-convex functions, making them highly at-
tractive for this setting. A model could be trained off-line
on historic data and used in real-time to make predictions
on an optimal power setting. In this work, we explore two
applications of machine learning for OPF:

1. End-to-end: Train a model to directly predict the
optimal generator setting for a given load distribution. This
is challenging, as the model’s output must be adherence
with physical laws/engineering limits.

2. Constraint prediction: Train a model to predict which
constraints are active (i.e at equality) in the optimal solution.
Knowing this active set can be used to warm start existing
approaches (i.e. interior point methods) and reduce solution
time.
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2. Related Work
Prior work has explored different applications of machine
learning on the grid. This includes work on estimating active
constraints for DCOPF (Ng et al., 2018; Misra et al., 2018),
predicting grid failures (Rudin et al., 2012), or choosing
between traditional solvers (King et al., 2015). Machine
learning has also been applied to related variants of the OPF
problem, including automated grid protection (Donnot et al.,
2017), price proxy prediction (Canyasse et al., 2016), or
private information recovery (Donti et al.). To the extent
of our knowledge, there has been limited work on direct
applications of deep learning towards ACOPF.

3. Method
We now present the traditional ACOPF problem, and de-
scribe how to formalize it as a machine learning task(Frank
et al., 2012). For a fixed grid topology G, let N denote the
set of buses (nodes), L denote the set of branches (edges),
and G ⊆ N denote the set of controllable generators. For
bus i, we enumerate PGi (real power injection),QGi (reactive
power injection), PLi (real power demand), QLi (reactive
power demand), Vi (voltage magnitude), and δi (voltage
angle). the power demand at AC OPF can be framed as:

minimize
PGi

∑
i∈G

Ci(P
G
i ) (1a)

subject to

Pi(V, δ) = PGi − PLi , ∀i ∈ N, (1b)

Qi(V, δ) = QGi −QLi , ∀i ∈ N, (1c)

PG,min
i ≤ PGi ≤ P

G,max
i , ∀i ∈ G, (1d)

QG,min
i ≤ QGi ≤ Q

G,max
i , ∀i ∈ G, (1e)

V min
i ≤ Vi ≤ V max

i , ∀i ∈ N, (1f)

δmin
i ≤ δi ≤ δmax

i , ∀i ∈ N (1g)

Where (1a) typically represents a polynomial cost func-
tion, (1b)-(1c) corresponds to the power flow equations, and
(1d)-(1g) represent operational limits on real/reactive power
injections, nodal voltage magnitude, and nodal voltage an-
gles2 respectively. More recent settings of OPF - including
ours- also include limits on branch currents. These are out-
lined in more detail by Frank et al. (2012). We now present
two formalizations of AC OPF as a machine learning prob-
lem. In our setting, we assume that PLi and QLi (real and
reactive demand) are known across all N buses.

2A single reference bus ("slack" bus) is fixed to Ṽ = 1.0∠0

3.1. End-to-end Prediction

In this setting, we pose the AC OPF problem as a re-
gression task, where we predict the grid control vari-
ables (PGi and V Gi ) from the grid demand (PLi and
QLi ). These fix a set of equations with equal number
of unknowns, which can be solved to identify the re-
maining state values for the grid. Formally, given a
dataset of n solved grids with load distributions X =
{[PL0 , .., PLN, QL0 , ..., QLN]}ni=1 and corresponding optimal
generator settings Y = {[PG0 , .., PGG , V G0 , ..., V LG ]}ni=1, our
goal is to learn fθ : X → Y which minimizes the mean-
squared error between the optimal generator settings Y and
the predicted generator settings Ỹ . Solving for the remain-
ing state variables can be posed as a power flow problem,
and reduces to finding V Li , QGi , and δi such that (1b)-(1g)
are satisfied.

The central challenge in this setting is ensuring that the
neural network’s solution respects physical laws and engi-
neering limits. Though provable guarantees may be difficult
to make, we experiment by incorporating soft penalties into
our loss function that encourage predictions to fall within le-
gal limits. These correspond to linear penalties that activate
when when (1d) and (1f) are violated. In future work we
hope to explore more sophisticated (and robust) techniques
for enforcing legality.

3.2. Optimal Constraint Prediction

Given that neural networks may learn solutions that violate
physical constraints, and are thus untrustworthy in practical
settings, we explore optimal constraint prediction as formu-
lated by Misra et al. (2018). In this setting, our model is
trained to predict the set of constraints that are active in the
optimal solution for some load distribution. A constraint
is active if the corresponding state/control variable is at
the maximum or minimum allowed value. As Misra et al.
(2018) describe, knowing the active set of constraints can be
used to warm start a more traditional optimization method,
and reduce time to convergence.

Formally, for each grid we define a constraint vector y ∈
R2G+2N corresponding to an enumeration of constraints
(1d)-(1e), where yi = 1 if the i-the constraint is active in the
optimal solution, and yi = 0 otherwise. We learn fθ which
maps from the load distribution [PL0 , .., P

L
N, Q

L
0 , ..., Q

L
N]

to this constraint vector. This corresponds to a multi-label
classification problem.

Optimal constraint prediction presents several advantages
over end-to-end prediction.

1. Solver Speedup: From an optimization perspective,
knowing the set of active constraints equates to warm-
starting, and can significantly speed-up more traditional
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algorithms like interior point methods, active set meth-
ods, simplex methods, and others. Quantifying this
speedup is the focus of ongoing work.

2. Reliability: This setting reduces the risk of a neural
network producing a solution which violates physical
laws/engineering limits. Because the physical and en-
gineering constraints are enforced by the solver, an in-
correct prediction will at worst increase solution time
or lead to a suboptimal solution. In the end-to-end set-
ting described in Section 3.1, incorrect predictions could
destabilize the grid.

3. Task complexity: Classifying the set of active con-
straints is significantly easier than predicting a set of
real valued targets.

4. Results
We validated approaches for end-to-end prediction and con-
straint prediction on IEEE 30-bus 3 and 118-bus test cases4.
These test cases include predetermined constraints.

4.1. Dataset Generation

The IEEE test cases include a pre-calculated load distri-
bution (denoted as x∗. In order to construct a dataset for
each case, we repeatedly sample candidate load distribu-
tions x′ ∼ Uniform((1 − δ) · x∗, (1 + δ) · x∗), for some
fixed δ. We identify y′ by solving the OPF problem for x′

via Matpower (Zimmerman et al., 2011). In some cases,
the solver fails to converge, suggesting that the sampled x′

has no solution given the grid constraints. In this case, we
discard x′.

We generated 95000 solved grids for case118 and 812888
solved grids for case30 with δ = 0.1 (a 10% perturbation
to the IEEE base demand). Interestingly, we observe that
while 100% of the samples generated for case118 were
successfully solved, only 81.2% of the samples for case30
were successfully solved. For all prediction tasks, we used
a 90/10 train-test split and report results on the test set.

4.2. End to end prediction

We evaluate task performance along two metrics:

• Legality Rate: The proportion of predicted grids which
satisfy all engineering and physical constraints.

• Avg. Cost Deviation: The average fractional difference

3https://electricgrids.engr.
tamu.edu/electric-grid-test-cases/
ieee-30-bus-system/

4https://electricgrids.engr.
tamu.edu/electric-grid-test-cases/
ieee-118-bus-system/

between the cost of the predicted grid, and the cost of the

true grid:
1

n

∑n
i |1−

pred costi
true costi

| over legal grids.

Roughly, this captures the reliability and optimality of a par-
ticular model. We examine a range of different architectures
and training strategies. We performed a grid search consid-
ering models with 1-2 hidden layers, 128/256/512 hidden
neurons, ReLU/Tanh activations. We also experimented
with vanilla MSE loss, and a variant with linear penalties for
constraint violations (described in Section 3.1). Each model
was trained with Adam (lr = 0.001) until loss convergence,
for a maximum of 2000 epochs.

Grid Legality Rate Avg. Cost Deviation
case30 0.51 0.002
case118 0.70 0.002

Table 1. End-to-end prediction performance. Average cost devia-
tion is only reported for legal grids.

Table 1 reports the best performance for each grid type. For
case30, the optimal model was a two layer neural network
with tanh activations, and no loss penalty. For case118, the
optimal model was a three layer network with 512 hidden
neurons, ReLU activations, and a constraint loss penalty. In-
terestingly, we observe better performance on case118 than
case30. Though we would intuitively expect task difficulty
to scale with grid size, this result suggests that other factors
could affect a model’s generalization ability. In particular,
smaller grids could be less stable, and thus more likely to
produce a wide range of (less predictable) behavior under
varying demand distributions. We also observe that the cost
of the optimal model predictions were within 1% of the
optimal cost.

4.3. Constraint Prediction

For constraint prediction, we evaluate performance in terms
of accuracy (i.e. the proportion of constraints classified
successfully). We perform a similar hyperparameter grid
search and report the best results in Table 2.

Grid % Accuracy
case30 0.99
case118 0.81

Table 2. Constraint prediction performance

In general, we find neural networks to be highly successful
at determining which the active constraint set.

https://electricgrids.engr.tamu.edu/electric-grid-test-cases/ieee-30-bus-system/
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/ieee-30-bus-system/
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/ieee-30-bus-system/
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/ieee-118-bus-system/
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/ieee-118-bus-system/
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/ieee-118-bus-system/
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5. Conclusion
In this work, we presented two approaches that leverage ma-
chine learning for solving ACOPF. Preliminary experiments
present promising results in both settings. In next steps, we
hope to evaluate our methods on more complex grid archi-
tectures, and explore different approaches for incorporating
grid constraints into our models.
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