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Abstract

Transportation electrification has been growing
rapidly in recent years. The adoption of electric
vehicles (EVs) could help to release the depen-
dency on oil and reduce greenhouse gas emission.
However, the increasing EV adoption will also
impose a high demand on the power grid and may
jeopardize the grid network infrastructures. For
certain high EV penetration areas, the EV charg-
ing demand may lead to transformer overloading
at peak hours which makes the maximal EV pene-
tration analysis an urgent problem to solve. This
paper proposes a data-driven chance constrained
programming based framework for maximal EV
penetration analysis. Simulation results are pre-
sented for a real-world neighborhood level net-
work. The proposed framework could serve as a
guidance for utility companies to schedule infras-
tructure upgrades.

1. Introduction
With the increasing attention on environment protection and
development of battery technology, electric vehicles(EVs)
are growing very quickly in the last few years. The global
sales of EVs has increased significantly in last four years
(Global EV Outlook 2018). The annual EV sales increase
in 2018 in Canada was 79% and 81% in the US. Electric
vehicles could help to reduce oil dependency and protect
the environment compared with traditional internal com-
bustion engine vehicles. Many countries and regions have
proposed transportation development plan to promote the
development of transportation electrification. It is expected
that in China, EVs and PHEVs (plug-in Electric Vehicles)
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production capacity will reach two million in 2020 (China
State Counil). And in Germany, the production capacity of
EVs and PHEVs will reach one million in 2020 and five
million in 2030 (German Goverment).

The EVs as a whole will cause a high power demand and
impose significant impacts on the grid. The early adopters
of EVs adopting similar behaviors could cause overloading
problems for the neighborhood level network. Then for
those networks, infrastructure upgrading will be required.
It has been a pressing topic for the utility companies to
analyze the maximal allowable EV penetration for certain
networks to schedule the infrastructure upgrading. This
paper aims to propose a framework to analyze the maximal
EV penetration for a given neighborhood level network. The
proposed framework could serve as guidance for the utility
companies to devise infrastructure upgrading plans.

2. Related Work
The impacts of EV charging on power system has been
discussed in several papers. In (Fernandez et al., 2011), the
authors stated that 60% of electric vehicle penetration would
lead to a 40% of power loss increase for off peak hours. The
high EV charging demand may also require infrastructure
upgrading for the power system which would impose a high
cost. It would be helpful for the utility companies to learn
the maximal EV penetration for an existing network. The
penetration of electric vehicle has been discussed in several
papers. In (Wu et al., 2017; Wi et al., 2013), EV charging
scheduling strategies are discussed for buildings and homes.
In (Wu et al., 2014), the authors analyzed the maximal EV
penetration with considering both the customer satisfaction
and charging constraints.

Implementation of chance constrained programming has
been discussed in some recent papers. In (Ravichandran
et al., 2018), a chance constrained programming based
framework is used for energy scheduling in a microgrid.
In (Bruninx et al., 2018), the chance constrained program-
ming is used for the day-ahead scheduling of a power plant.
In this paper, chance constrained programming has been
implemented to learn the maximal EV penetration for a
given neighborhood level network, in which we consider
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that some constraints like the total power consumption could
be violated with certain probabilities.

Power transformers have inherent overloading capability. As
shown in (Shahbazi et al., 2007), the authors mentioned that
when operating within the transformer capacity, transformer
overloading could provide economic benefit. In this paper,
we treat the transformer peak power consumption as a soft
constraint and allow it to be higher than the rated power
consumption with a certain probability.

3. System Models
3.1. Base Load Consumption

It is assumed that there are two types of power consump-
tions in a neighborhood level network: base load power
consumption and electric vehicle charging power consump-
tion. The base load consumption refers to all types of power
consumption except for EV charging consumption. The
load profiles (Wu et al., 2014) for one summer day and one
winter day of a neighborhood level network are shown in
Fig.1. We can see that even with two Tesla model S (charg-
ing rate is 6.6kW) charging at the same time, the total peak
power consumption will be doubled in this network for the
winter day.

Figure 1. Base load consumption for a neighborhood network

3.2. Electric Vehicles Charging Load

The EV charging power consumption can be treated as a
kind of flexible power consumption (Clement-Nyns et al.,
2010). The charging demand only needs to be finished be-
fore the departure time. We assume that there are N electric
vehicles in every house and all the EVs in the neighborhood
level network could be charged with continuous charging
rate (between zero and maximal charging rate).

3.3. Transformer Overloading

Transformers are designed with inherent overloading ca-
pability. The controlled transformer overloading could be

used to mitigate the high EV adoption. In this paper, we
assume that the neighborhood level transformer overloading
is allowed with a low probability. The impact of transformer
overloading on maximal EV penetration for a certain neigh-
borhood level network is studied.

3.4. Short-term Load Forecasting

Day-ahead base load consumption forecasting is used for
the EV penetration analysis. The hourly base load power
consumption and hourly temperature of last three days are
used as features to predict the hourly base load power con-
sumption in the next day (24 hours). Support vector regres-
sion (SVR) is chosen as the model for short-term base load
forecasting.

4. EV Penetration Assessment Framework
4.1. Chance Constrained Programming Framework

The framework to determine the maximal EV penetration
for a given neighborhood level network is shown in Fig. 2.
For this problem, we have two types of constraints: hard
constraints which should be satisfied for every time slot
and soft constraints which could be violated with certain
probabilities.

There are mainly three steps to study the maximal EV pen-
etration for a given network. The first step is to prepare
historical base load power consumption, and regional sur-
vey for customers driving habits. Historical base load power
consumption data could be used to implement day-ahead
base load forecasting. Regional survey data could be used to
learn the driving habits inlcuding leaving home time, arriv-
ing home time, and daily driving distance for the residents
in the neighborhood. The second step is to set up the hard
constraints and soft constraints. The third step is to solve the
optimization problem until the maximal EV penetration for
a given neighborhood level network is found. The objective
and constraints are discussed as follows.

4.2. Objective Function

The objective function is the maximal allowed EVs in a
certain network: Nmax ev .

max Nmax ev (1)

4.3. Constraints with Transformer Overloading

Charging power limit: the charging consumption for the
EV i at time slot j, pc[i][j] should be smaller than the
maximal charging power defined by the EV specification
pcmax[i].

∀i,∀j, pc[i][j] ≤ pcmax[i] (2)

SOC requirement: Equation (3) describes that the battery
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Figure 2. Penetration determining framework

SOC (bsoc, battery state of charge) is increased with the
amount of charged energy where E[i] is battery capacity
and ηe[i] is charging efficiency. Equation (4) requires that in
the end, all EVs should be charged with a minimum amount
of energy bsocmin[i]. Equation (5) constrains that the EV
bsoc should be smaller than the upper limit ( bsocmax) for
all time slots.

∀i,∀j, bsoc[i][j] = bsoc[i][j−1]+ηe[i] ·pc[i][j] ·T ·
100

E[i]
(3)

∀i,∀j bsoc[i][j] ≥ bsocmin[i] (4)

∀i,∀j bsoc[i][j] ≤ bsocmax[i] (5)

The timing constraint: EVs can only be charged when
they are parked at home (tc[i][j] = pcmax[i]).

∀i, ∀j, 0 ≤ pc[i][j] ≤ tc[i][j] (6)

Soft Chance Constraint: When transformer overloading is
allowed, we use total power consumption as soft constraint.
The total power consumption (sum of total base load: pbt[j]
and total EV charging load: pct[j]) could be larger than the
low-upper bound Pmax 1

t with a probability of 1− Ppt.

∀j, Prob{pct[j] + pbt[j] ≤ Pmax 1
t } ≥ Ppt (7)

Total power consumption hard constraint: the total
power consumption should be smaller than the upper bound
Pmax 2
t for every time slot.

∀j, pct[j] + pbt[j] ≤ Pmax 2
t (8)

5. Experimental Results
The proposed optimization framework is used to evaluate a
real-world neighborhood level network in Ottawa in Canada.

The survey data discussed in (Xiong et al., 2015) is used
to build the arrival, and departure pattern for the EVs. We
assume that the required bsoc bsocmin is 85 and maximal
bsoc bsocmax is set as 95. The soft constraint for the total
power consumption is 50 kW (Pmax 1) and hard total power
consumption is 60 kW (Pmax 2). The violation probability
(1− Ppt) is 20% or 30%. Honda Fit is used for evaluation,
for which the maximal charging rate is 6.6 kW and battery
capacity is 20 kWh. The proposed framework could also be
treated as a charging scheduling method as well as a method
for EV penetration analysis. The maximal EV penetration
for four scenarios are analyzed: start EV charging when
arrived home (ASAP), zero violation (No overloading), 20%
and 30% probability of soft constraint violation.

Table 1. Maximal EV Penetration Analysis
Scenarios Winter Summer

ASAP 4 5
No overloading 45 43

20% overloading 48 47
30% overloading 53 50

The optimization problem is modeled in Java and solved
by the IBM ILOG CPLEX Optimizer 12.0. All simulations
are run on a laptop with an Intel i7 CPU and 16 GB mem-
ory. The experimental results are shown in Table.1. We
can see that without any control, for the given neighbor-
hood the maximal EV penetration could only be 4 and 5
for the two days. With the proposed control framework, we
can have a significant EV penetration increase (close to 10
times increase) which shows the importance of EV charging
scheduling. When transformer overloading allowed, we can
further increase the maximal EV penetration for a given
neighborhood level network. This shows that the proposed
framework can successfully demonstrate the maximal EV
penetration for different overloading scenarios.

6. Conclusion and Future Work
The fast increase of electric vehicle adoption will bring a
high power demand on the power system especially for peak
power consumption hours. The infrastructure upgrading for
neighborhood level network has been a pressing problem
to support the continually increasing power demand. This
paper proposed a data-driven chance constrained program-
ming framework to analyze the maximal EV penetration in
which the transformer overloading is considered as a soft
constraint. Experimental results show that the maximal EV
penetration for one neighborhood level network could be
significantly increased with soft constraints considered. In
the future, we plan to implement more case studies with
the proposed framework and consider different kinds of soft
constraints.
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