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Abstract

Climate projections suffer from uncertain equi-
librium climate sensitivity. The reason behind
this uncertainty is the resolution of global cli-
mate models, which is too coarse to resolve key
processes such as clouds and convection. These
processes are approximated using heuristics in a
process called parameterization. The selection of
these parameters can be subjective, leading to sig-
nificant uncertainties in the way clouds are repre-
sented in global climate models. Here, we explore
three deep network algorithms to infer these pa-
rameters in an objective and data-driven way. We
compare the performance of a fully-connected net-
work, a one-dimensional and, a two-dimensional
convolutional networks to recover the underlying
parameters of the Lorenz-96 model, a non-linear
dynamical system that has similar behavior to the
climate system.

1. Introduction
The global warming target of the 2015 Paris Agreement
is 2◦C above pre-industrial level. How much greenhouse
gases can accumulate in the atmosphere before this thresh-
old is crossed? There is no certain answer to this question.
There has not been one for decades because of the very
large spread in climate models used to predict this target.
The answers vary from 480 ppm, which will be reached
around 2030, to 600 ppm, which will be reached much later
after 2060 (Schneider et al., 2017b). Optimal emission path-
ways, policy responses, and socioeconomic costs of climate
change vary vastly between the high and low end of this
range.

What lies behind this recalcitrant uncertainty is the coarse
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resolution of global climate models (GCMs), which hin-
ders resolving crucial processes like cloud formation and
moist convection (Stevens & Bony, 2013). Climate models
compute solutions to the laws of thermodynamics and fluid
dynamics on computational grids. These grids have a typi-
cal scale varying from 10 to 150 km. Cloud formation takes
place on smaller scales (i.e., 2 km or less) and cannot be
resolved by current climate models. Therefore, clouds are
modeled by heuristically approximated ”parameterization”
schemes. These parameterization schemes include uncertain
parameters, selected by climate scientists based on expe-
rience and intuition (Hourdin et al., 2017) but not as sys-
tematically informed by data. In addition, the non-linearity
of the climate system means that climate simulations can
depend sensitively and in unexpected ways on these parame-
ters (Zhao et al., 2016), which is why we still cannot answer
our initial question with certainty. In this study, we show
that deep learning can provide an objective, data-driven and
computationally efficient approach to parameters estimation
for sub-grid parameterization. We illustrate this idea using
the Lorenz-96 model (Lorenz, 1996).

2. Lorenz-96 model
The Lorenz-96 model is a dynamical system that behaves
in a non-linear way resembling the non-linear behavior of
the climate system and consists of a coupling of variables
evolving over slow and fast timescales (Schneider et al.,
2017a). The model consists of K slow variables, where
each slow variable Xk, k = 1, ...,K is coupled with J
fast variables Yj,k, j = 1, ..., J . The model is governed by
K + JK equations:

dXk

dt
= −Xk−1(Xk−2−Xk+1)−X−k+F−hcY k (1)

1

c

dYj,k

dt
= −bYj+1,k(Yj+2,k−Yj−1,k)−Yj,k+

h

J
Xk (2)

where

Y k =
1

J

J∑
j=1

Yj,k (3)

The slow variables X represent resolved-scale variables in
a climate model, while the fast variables Y represent unre-
solved variables (e.g., turbulence and convection). This set
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of equations are coupled through the mean term Y k and this
coupling is controlled by three keys parameters: b, c and
h. The parameter b controls the amplitude of the nonlinear
interactions among the fast variables, while the parameter c
controls how rapidly the fast variables fluctuate relative to
the slow variables and the parameter h controls how strong
the coupling between the fast and slow variables is. The
goal of this study is to investigate the viability of parame-
ter estimation using three learning models, namely a fully
connected network (FC), a one-dimensional convolutional
network (Conv1D) and a two-dimensional convolutional
network (Conv2D).

3. Data and methodology
The Lorenz-96 (L-96) model was used to generate 200 sim-
ulations for four slow variables X, each associated with
four fast variables Y. Each simulation was generated using
a different combination of b, c and h parameters and was
initialized with the same values for X and Y. The resulting
temporal sequences were mapped to grayscale images of
size (50000, 20), where the width dimension represents the
slow and fast variables (i.e., 4+16) and the height dimension
represents the number of time steps over which the L-96
was accumulated. Each image was split into 2500 smaller
(20, 20) image chunks. These chunks were used as training
examples for the networks. For all learning models explored
in this study, the input to the model is an image chunk of
shape (20, 20, 1) and the output layer is an FC layer with
three nodes outputting a prediction for b, c and h. During
testing, the inferred values for the parameters b,c and h were
averaged over the chunks belonging to the same initial L-96
image. The networks were optimized using Adam. The
loss function used was the weighted mean squared error
normalized by the standard deviations of the parameters.

Since the L-96 data is used to represent climate data with
hidden parameters, and considering that the majority of cli-
mate data is spatio-temporal, training an Conv2D to recover
the parameters seems to be an ideal architecture choice.
However, in our case, the L-96 images are temporal on the
y-dimension while the x-dimension represents the different
slow and fast variables. Therefore, while using a convolu-
tional neural network is a more sensitive approach for actual
climate data, in the case of the L-96 images, we start by
using a fully-connected network, where every image chunk
is first flattened and then fed to three dense layers with 400,
200 and 60 nodes. Additionally, we also train a one dimen-
sional convolutional model along the temporal dimension
(y axis of the L-96 image), to investigate whether patterns
across time can be learned by the network. In this case,
we based the model on two 1D convolutional layer with 32
filters of size 3 in each layer, followed by a maxpooling
layer and two dense layers with 128 and 60 nodes. Finally,

although aware that the L-96 data is not spatio-temporal and
therefore breaks the assumptions for using a Conv2D model,
as the x dimension does not contain any spatial information,
we investigate this architecture to test the potential that 2D
convolutional networks can hold when trained on actual
spatio-temporal climate data. It should be noted here that
using a Conv2D assumes that two adjacent columns in a
given L-96 image chunk have a stronger correlation than
two columns further apart. This might or might not be true,
and we expect the Conv2D to fail at capturing long-ranging
relationships between pixel columns far from each other
(e.g., Y1 and Y10). In all architectures, LeakyRelu was used
as the activation function with an alpha equal to 0.001.

Two learning tasks were investigated. First the parame-
ters were recovered from both the slow and fast variables
used as inputs, then the parameters were recovered from
the fast variables alone. In a second set of experiments,
two different testing modes were evaluated. In the first
mode, referred to as test mode = False, the image chunks
in the test set were unobserved during training but came
from the same initial (50000, 20) L-96 images (i.e., the
same parameters space), while in the second scenario, when
test mode = True, the image chunks at test time came
from newly generated (50000, 20) L-96 images.

4. Results
Overall, all of the FC, Conv1D and Conv2D models suc-
cessfully recovered the parameters b, c and h, as measured
by the MSE loss and the coefficient of determination r2

(see Table 1). In addition, the performance of linear regres-
sion (LR) is shown as a baseline. Qualitative results are
presented in Figure 1 and 2. Using fast variables alone as
inputs was sufficient to accurately recover the hidden param-
eters. Regarding the different test modes explored, when
test mode was set to True, the models r2 values dropped
by around 0.1, as both the temporal variability (where does
the image chunk belong in the original L-96 sequence) and
the parameters variability (which combination of b,c and h
generated a given image chunk) had to be captured by the
learning models.

In addition, although the FC model lead to the most accurate
recovery of parameters when test mode was set to False,
Conv1D outperformed the FC model when test mode was
changed to True. We explain such inconsistency from the
perspective of finite difference analysis and optimization.
Since the filter size of convolutions is set to 3, the convolu-
tional filters applied on the temporal dimension can capture
at most the local second-order relationships in the system
while fully-connected counterpart can estimate the higher-
order relationships. However, the latter is harder to optimize
due to its large number of parameters and less inductive bias.
Inductive bias is known to be crucial to deal with unseen
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Table 1. Training and testing loss and coefficient of determination.

TEST MODE MODEL TRAIN LOSS TEST LOSS TRAIN r2 TEST r2

. . LEARNING FROM X AND Y

. LR 1.7512 1.7560 0.7588 0.7578

. FC 0.6583 0.6714 0.9094 0.9074

. CONV1D 0.6682 0.6812 0.9079 0.9060

. CONV2D 0.6502 0.6861 0.9105 0.9054

False . LEARNING FROM Y ONLY

. LR 1.7394 1.7429 0.7605 0.7597

. FC 0.6647 0.6808 0.9084 0.9061

. CONV1D 0.6968 0.7073 0.9041 0.9024

. CONV2D 0.6744 0.7063 0.9071 0.9026

. . LEARNING FROM X AND Y

. LR 1.7371 2.9112 0.7609 0.6059

. FC 0.7064 1.3262 0.9028 0.8212

. CONV1D 0.7029 1.2822 0.9031 0.8263

. CONV2D 0.6577 1.3260 0.9070 0.8125

True . LEARNING FROM Y ONLY

. LR 1.7407 2.9268 0.7604 0.6039

. FC 0.6805 1.3197 0.9063 0.8220

. CONV1D 0.6898 1.2726 0.9050 0.8276

. CONV2D 0.6577 1.3260 0.9094 0.8210

situations as it is the case when test mode = True. As for
the test mode = False setting, the fully-connected model
can depict more complex temporal dependency than convo-
lutional filter and thus extract more useful representations
for parameter recovery.

5. Conclusion
This study showed the promising potential of deep learning
algorithms for objective and data-driven parameters estima-
tion. In order to illustrate how the model proposed in this
paper fits into a GCM, we adopt the framework proposed
in (Schneider et al., 2017a). In (Schneider et al., 2017a),
the authors make the distinction between two types of pa-
rameters: computable and non-computable parameters. The
authors further envision a parameterization scheme, which
once embedded in a GCM, can learn directly from global
observations, with targeted high-resolution simulations used
to update parameters in grid cells with the highest uncer-
tainty. In this paper, we illustrate an intermediate step where
the parameters are learned off-line, using the Lorenz-96
model. Our first learning task: learning from both slow
large-scale variables X and fast small-scale variables Y cor-
responds to learning parameters from global observations.
In this case, the dynamical system (i.e., Lorenz-96) with
parameters b, c and h represents the GCM, while the X and
Y data generated by the dynamical system with the true
values of b, c and h represent the global observations. The
second learning task consists of learning parameters from
the fast small-scale Y variables alone and is equivalent to
learning about computable parameters from high-resolution
simulations.

Figure 1. Lorenz-96 phase diagram of the first three slow (X) and
fast (Y) variables using observed parameters (green), learned pa-
rameters from the X and Y variables (blue) and learned parameters
from the Y variables only (red). The learning algorithm is a fully
connected network with test mode set to False.

Figure 2. Lorenz-96 phase diagram of the first three slow (X) and
fast (Y) variables using observed parameters (green), learned pa-
rameters from the X and Y variables (blue) and learned parameters
from the Y variables only (red). The learning algorithm is a 1D
convolutional model with test mode set to True.
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