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Abstract

The planning and operation of electricity grids
is carried out by solving various forms of con-
strained optimization problems. With the increas-
ing variability of system conditions due to the
integration of renewable and other distributed en-
ergy resources, such optimization problems are
growing in complexity and need to be repeated
daily, often limited to a 5 minute solve-time. To
address this, we propose a meta-optimizer that is
used to initialize interior-point solvers. This can
significantly reduce the number of iterations to
converge to optimality.

1. Introduction

Optimization methods are increasingly being used for plan-
ning and operations of complex systems such as electricity
grids. A central part of daily planning and operations of elec-
tricity grid operators (Tong, 2004) is to dispatch generation
in order to meet demand at minimum cost, while respecting
reliability and security constraints. This is done by solving
a constrained optimization problem, often referred to as
Optimal Power Flow (OPF). The OPF problem is in general
challenging because, 1) it is a non-convex and non-linear
constrained optimization problem that can also be mixed
integer in its full form, and 2) it is computationally expen-
sive due to the large size of power grids and high number of
constraints. In order to reduce the time complexity of the
OPF problem the general practice is to use an approximate
form that is convex and has a reduced number of variables
and constraints. However, the solution to this simplified
problem is known to be far from the optimal one and can
lead to inefficiencies in grid operations (Ilic et al., 2006).

According to the United States Environmental Protection
Agency (epa, 2019), electricity production contributed to
27.5% of the total U.S. greenhouse gas (GHG) emissions in
2017 placing this sector in the second place among GHG
producers. With increasing concerns over climate change,
multiple studies have suggested that reducing overall emis-
sions from generation should be taken into account in OPF
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(Gholami et al., 2014), which makes the problem more com-
plex. Further, the integration of renewable energy sources
such as wind and solar add other complications to OPF due
to the volatility of these resources. To deal with this volatil-
ity, OPF should be solved as near to real-time as possible,
which would require improvements to OPF convergence
times and robustness.

2. Proposed Methodology

Non-linear and non-convex constrained optimization prob-
lems can be solved by interior-point methods such as [Popt
(Wichter & Biegler, 2006). They can take as input a given
initialization (called warm-start). A good initialization is
important for two reasons: 1) it can help avoid poor local
minima and reach the global minimum, and 2) it can speed
up convergence to this global minimum. We propose an
algorithm that outputs the initialization for interior-point
solvers, through meta-optimization. This algorithm can be
trained by using a loss metric as the number of iterations
needed to solve the problem. This approach is inspired by
recent work in the meta-learning literature, including (Ravi
& Larochelle, 2017) and (Finn, 2017).

Our model is trained not to optimize a single instance of
an OPF problem, but a family of them. It takes as input a
formulation of the problem, and outputs an initialization.
Advantages of this method include: 1) leveraging already
well-established constrained optimization solvers, and 2)
getting guaranteed solutions to the true problem. However,
a limitation of this approach is needing to train over all
potential grid sizes. To resolve this, we consider grid com-
pression techniques. Initialization is “decompressed” such
that only the original OPF formulation is solved.

The following terminology is used in the rest of the paper:

e Scenario generation: Given a grid, it creates new
cases for train / testing by mutating grid parameters.

e Model: Neural Network (NN) that is trained to output
solution initialization for OPF given grid input data.

e Conventional Loss: Quality metric on initialization
(e.g., MSE to final solution for a convex OPF).

e Meta-Loss: Sum over the number of interior-point
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steps to reach optimal solution for selected scenarios.
Fig. 1 shows the components of the proposed methodology:

e Problem Features: x contains all the input parameters
(e.g., lines, generators...) that define the OPF problem.

e Meta-Optimizer: The meta-optimizer is trained over
a class of OPF problems, with the objective of mini-
mizing the meta-loss. At test-time, the initializations
of OPF solvers result in faster convergence.

e Reduced Features: Not all the features that define
an OPF problem are necessary to find a good initial-
ization for an interior-point solver. Further, it would
be cumbersome to retrain the meta-optimizer for ev-
ery new grid or OPF problem. We propose a solution
where separate meta-optimizers are trained for a set of
pre-defined grids denoted by G, and a grid compres-
sion (see e.g., (Wang et al., 2010)) is used to reduce a
given grid down to the nearest available size in G and
therefore to obtain the reduced features (z"°). The rec-
ommended initialization (y{fd) is then decompressed

(yo) before IPopt solves the original OPF.

e OPF Solver: Solves the OPF model using the recom-
mended initialization (Coffrin et al., 2018).
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Figure 1. Proposed workflow of meta-optimized OPF.

3. Preliminary Results

To demonstrate the core concept, we pick different grids
from the pglib-v19.05 (pgl) library treating them as mem-
bers of the set G, for which we want to train the meta-
optimizer. For each case, we start with scenario generation.
Grid compression / decompression has not been included
in this experiment as we are only dealing with members of
G for now. For this experiment we use DC-OPF as an ap-
proximation for simplicity and employ Ipopt solver to solve
the optimization. Given the non-differentiable metaloss-
function, we consider gradient-free optimization (GFO),
such as Particle Swarm Optimization (PSO) to train the
“meta-optimizer”.

To motivate the importance of good initialization we refer
to Fig. 2. Here, we use a metric of efficiency where 0%
efficiency is the number of iterations that takes the solver
to find the optimal point using a heuristic initialization, and
100% efficiency is for the case when both the primal and
dual variables are initialized with the exact solution. In
our experiments we focus on initializers for primals only
and investigate how much we can approach the theoreti-
cal upper-bound of efficiency (i.e. using the exact primals
as initializers). The importance of initialization will be a
function of grid complexity, such as the size of the feasible
region. What we present here are the statistics of primal
initialization efficiency across a family of grid states.
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Figure 2. Efficiency of primal ini- Figure 3. Meta-loss minimiza-
tialization tion using the proposed method

In order to highlight the advantages of meta-optimization,
we compare a conventional NN supervised learning using a
MSE(yN, y*) objective on the metaloss, followed by the
meta-training in Fig. 3. As can be seen, the meta-training
could further minimize the meta-loss and can therefore lead
to better initializations.

4. Challenges and Future Direction

There are three challenging problems we face in this design:

e Problem Representation: A challenging part of the
meta-optimization pipeline is to encode the OPF for-
mulation into a family that has been meta-trained.

e Meta-Optimizer Training: The optimizers such as
Ipopt are generally complex pieces of software so un-
like (Finn, 2017) we are unable to backpropagate gradi-
ents through this part of the pipeline and that is why we
used a GFO. We want to investigate the implementation
of constrained optimization solvers in differentiable
programming languages (Amos & Kolter, 2017).

e Scalability: Different electrical grids exist, and further,
grids themselves change over time. We plan to train
multiple meta-optimizers over a set of pre-defined grid
sizes and compress any grid to its nearest grid size in
that set.
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