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Abstract

Widespread climate action is urgently needed, but
current solutions do not account enough for local
differences. Here, we take the example of cities
to point to the potential of machine learning (ML)
for generating at scale high-resolution informa-
tion on energy use and greenhouse gas (GHG)
emissions, and make this information actionable
for concrete solutions. We map the existing rele-
vant ML literature and articulate ML methods that
can make sense of spatial data for climate solu-
tions in cities. Machine learning has the potential
to find solutions that are tailored for each settle-
ment, and transfer solutions across the world.

1. Introduction
Climate change mitigation research provides a refined set of
methods whose outcomes serve as a reference for govern-
ments and individuals for climate action, e.g. by simulating
portfolios of decarbonization pathways consistent both with
global average temperature stabilization targets and stylized
societal or environmental constraints (IPCC, 2018). Yet,
large disagreements remain about mitigation potentials, e.g.
for energy end-uses (Creutzig et al., 2019). The emergence
of big data and ML methods offers climate solution research
to overcome generic recommendations and provide options
at urban, street, building scale, adapted to specific contexts,
but scalable to global mitigation potentials.

We conduct a systematic review of applied ML studies that
use on spatial data for mitigating climate change in cities.
Specifically, we survey the fields of remote sensing, trans-
port, and buildings. Based on research queries in Web of
Science, and following reporting standards for evidence syn-
theses (Haddaway & Macura, 2018), we find few research
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papers relying on ML methods to explicitly tackle climate
change mitigation. However, there are more than ten times
more sector-specific studies that either address GHG emis-
sions or energy use directly, or offer important intermediary
material while not making the link to energy use and emis-
sions explicit. For an overview of the most prevalent topics
and methods retrieved, see Fig. 2.

2. Digital twins of cities’ metabolism
We argue that ML methods have the potential to transform
climate mitigation research by generating digital twins1 of
cities’ metabolism2. Such models would connect together
urban structure and activities influencing energy use and
GHG emissions (see Fig. 1). A central hypothesis is that city
metabolism can be predicted from the former city character-
istics, if high resolution data is integrated (Silva et al., 2018;
2017; Creutzig et al., 2016; Zheng et al., 2014). We first
detail current ML methods that can generate knowledge on
urban structures and activities relevant to city metabolism.

Infrastructures observed from big data. Infrastructures
are the physical basis of cities. They are a first-order com-
ponent to analyse city metabolism, and predict localized
energy or emissions patterns. Many data sources are avail-
able, from remote sensing to city sensors; but this data is
often incomplete and the link with cities’ metabolism is
rarely made. ML can retrieve information to model infras-
tructures (Esch et al., 2017; Blaha et al., 2016) or mobility
flows (Zhao et al., 2016) at fine grain. This knowledge en-
ables the determination of spatial patterns of CO2 emissions
(Tao et al., 2014) and deployment strategies for mitigation
technologies (Yu et al., 2018).

Technological efficiency. Individual technological com-
ponents determine the efficiency of the urban metabolism
(Gershenfeld et al., 2010). Technologies have been sub-
ject to more precise modelling at small scale using ML. In

1Digital twins are virtual replications of physical entities that
enables to simulate their behaviors, e.g. for real-time optimization
or predictive maintenance. Originally developed for manufacturing
applications, digital twins could address the lack of spatial context
in mitigation studies. Note that highly simplified twins may be
sufficient here, while reducing storage and computation needs.

2City metabolism refers to energy use and GHG emissions in
cities, but can also include other flows like materials and wastes.
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Figure 1. Towards digital twins of cities’ metabolism. (A) Main components of machine learning research on urban spaces relevant to
climate change mitigation. Data sensed in the physical world and processed by ML enables to model and predict cities infrastructures and
activities, assess at fine-grain their metabolism, and model different future pathways towards low-carbon societies. (B) Integrating ML
studies on cities has the potential to scale up of urban solutions. (VGI: Voluntary Geographical Information)

buildings, ML helps understand load signals (Kelly & Knot-
tenbelt, 2015) and optimize devices or system, e.g. cooling
(Wang et al., 2017). For efficient mobility, ML can identify
inefficacies in driving (Magaña & Muñoz-Organero, 2015).
However, these studies are often idiosyncratic. Transfer
learning can upscale their spatial relevance (Mocanu et al.,
2016). Linking these methods with infrastructure models
could improve district-scale efficiency projects.

Human behaviors and perceptions. Dwellers’ choices
ultimately determine activity levels and resulting emis-
sions (Creutzig et al., 2018). ML helps target interven-
tions through behavioral models of: acceptance of novelty
(Carr-Cornish et al., 2011), triggers and resistances to more
energy-efficient lifestyles (Gabe-Thomas et al., 2016), or
mobility mode choices and shifts (Yang et al., 2018). Within
digital twins, modelling human behaviors can help identify
dynamic feedbacks: for example, infrastructure provision
(such as bike lanes) can foster changes in mobility choices.

Planning & management. A last holistic layer is to modify
the infrastructure in order to frame future usages. For exam-
ple, spatial settings can offer low-carbon transport systems,
with reduced distance, and more energy efficient transport
modes, if connectivity is high, land-use is mixed, and struc-
tures are compact. A handful of studies have targeted urban
planning, e.g. linking urban form and travel behavior (Ding
et al., 2018). ML also supports the deployment of low car-
bon modes, e.g electric vehicles (Longo et al., 2017) or
shared bikes (Xu et al., 2018).

3. Climate solutions from spatial settings
We find that a main limitation of the surveyed literature is the
dominance of utilizing ML for optimizing current usages,
which can lead to substantial rebound effects (Azevedo,
2014). In turn, we argue for greater focus on where ro-
bust and long-term mitigation potential is found: in spatial
configurations and policy options that can shape them.

Our proposed architecture of ML for low-carbon Urban
Planning could help progress towards planning scenarios
at high spatial and contextual resolution. Our workflow
is two-fold (see Fig. 3). First, it would aim at integrating
high-resolution data to generate climate semantics. Relevant
ML here includes supervised learning for inferring missing
data, and typology methods that identify informative pat-
terns (Creutzig et al., 2015). This stage would provide the
base of the digital twin. Second, an action-oriented block
would focus on making sense of this data to find policy
options. Methods include scenario techniques to simulate
development pathways, reinforcement learning to model lo-
cal interactions and causal inference can assess the success
of policies.

Such an architecture could stimulate more agile and rapid
deployment of effective solution strategies in human settle-
ments. First, it could transform environmental assessments
like the IPCC. Second, it would help policy makers imple-
ment municipal climate action. Third, it could have the
highest value in developing countries with low resources.
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Figure 2. Summary of machine learning methods reviewed. Re-
mote sensing, and to lesser degree, spatial studies in mobility and
buildings, rely on ML methods, while climate change mitigation
studies only scarcely build on ML methods. Supervised learning
tasks (columns 1 to 6) are the most frequent applications in all
fields. The information was extracted from the publicly available
metadata of the records; Machine Learning not defined is reported
when there is no specific method available from the metadata.
When several groups of methods are used in a record (e.g. dimen-
sionality reduction and supervised learning), the record is counted
in both categories.

Figure 3. An architecture of machine learning for low-carbon ur-
ban planning. (A) The architecture is an information flow from big
data to semantically relevant data for climate change mitigation-
oriented urban planning. The data can be processed by a succession
of different phases including ML and other media. (B) An example
workflow for estimating energy use of individual buildings at large
scale. Spatial data available at large scale are trained with precisely
metered building data.
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