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1. Introduction

As global greenhouse gas emissions continue to rise, the use
of geoengineering in order to artificially mitigate climate
change effects is increasingly considered. Stratospheric
aerosol injection (SAI), which reflects incoming solar radia-
tive forcing and thus can be used to offset excess radiative
forcing due to the greenhouse effect, is widely regarded
as one of the most technically and economically feasible
methods (Crutzen, 2006; MacMartin, 2014; Smith, 2018).
However, naive deployment of SAI has been shown in simu-
lation to produce highly adversarial regional climatic effects
in regions such as India and West Africa (Ricke, 2010). A
lack of regulation would allow countries to trigger SAI uni-
laterally, i.e. China, Russia or the US could decide to fix
their own climates and disrupt the ITCZ, which influences
the monsoon over India, as collateral damage. If geoengi-
neering is ceased before the anthropogenic radiative forcing
it is sought to compensate for has declined, termination ef-
fects with rapid warming would result, creating generational
injustice (Jones, 2013). Understanding both how SAI can
be optimised and how to best react to rogue injections is
therefore of crucial geostrategic interest (Yu, 2015).

In this paper, we argue that optimal SAI control can be
characterised as a high-dimensional Markov Decision Pro-
cess (MDP) (Bellman, 1957). This motivates the use of
deep reinforcement learning (DRL) (Mnih, 2015) in order
to automatically discover non-trivial, and potentially time-
varying, optimal injection policies or identify catastrophic
ones. To overcome the inherent sample inefficiency of DRL,
we propose to emulate a Global Circulation Model (GCM)
using deep learning techniques. To our knowledge, this is
the first proposed application of deep reinforcement learning
to the climate sciences.

2. Related work

General Circulation Models (GCMs), which simulate the
earth’s climate on a global scale, are inherently computa-
tionally intensive. Simple statistical methods are routinely
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used in order to estimate climate responses to slow forcings
(Castruccio, 2013). Recently, the advent of deep learning
has led to a number of successful emulation attempts of full
GCMs used for weather prediction (Diiben, 2018), as well as
for sub-grid scale processes (Brenowitz, 2018; Rasp, 2018),
including precipitation (O’Gorman, 2018). This suggests
that the emulation of the response of regional variables, such
as precipitation and surface temperature, to aerosol injection
forcings may now be within reach.

Investigation of optimal SAI control within the climate com-
munity is currently constrained to low-dimensional injection
pattern parametrisations (Ban-Weiss & Caldeira, 2010) or
manual grid search over edge cases of interest (Jackson,
2015). Even in simple settings, it has been shown that re-
gional climate response is sensitive to the choice of SAI pol-
icy (MacMartin, 2013). In addition, super-regional impacts
on El Nino/Southern Oscillation have been demonstrated
(Gabriel, 2015). This suggests that climate response to SAI
is sensitive enough to warrant a high-dimensional treatment.

Altering the injection altitude, latitude, season, or parti-
cle type - possibly even with the use of specially engi-
neered photophoretic nanoparticles (Keith, 2010) - may pro-
vide the ability to "tailor” fine-grained SAI. But, presently,
stratospheric aerosol models have substantially different
responses to identical injection strategies (Pitari, 2014), sug-
gesting directly simulating the implications of these strate-
gies - and the range of aerosol distributions that can be
attained - requires further model development.

3. GCM emulation

We use HadCM3 (Gordon, 2000) to simulate the climate
response to SAI as it is the first GCM not to require flux
adjustments to avoid large scale climate drift. In addition,
HadCM3 is still used as a baseline model for IPCC reports
(IPCC, 2013).

The radiative forcing of sulfate aerosols is emulated in
HadCM3 by adjusting the aerosol optical depth (AOD) in
the lower stratosphere, i.e. a larger AOD corresponds to a
larger sulfate aerosol concentration. Predominantly zonal
winds in the stratosphere are assumed to keep aerosol opti-
cal depth zonally uniform to first order, so it is prescribed
for each of the model’s 73 latitude bands. We also assume
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Figure 1. from left: 1. Global mean cooling relative to p-uniform and zero AOD baselines (full HadCM3 dataset) 2. Clear-sky upwelling
shortwave radiative flux 3. Outgoing shortwave radiative flux (with clouds) 4. AOD distribution (2., 3. and 4. at same time / same run)

that aerosol concentration completely decays within a year
and that aerosol concentration is upper-bounded by coagula-
tion effects (Hansen, 2005) and thus capped at 4p in each
latitude band, with p = moAgl, where Ag is the surface
area of the lower stratosphere band at an altitude of 20 km
(Smith, 2018).

Despite being up to a factor 102 faster than many contempo-
rary GCMs, a single HadCM3 year still corresponds to about
15 hours of computation on a generic single-thread CPU. In
order to employ DRL, we therefore require a fast emulator
that can predict next states in a matter of milliseconds.

We approximate the full HadCM3 state s; at time ¢ by
the scalar surface fields sea ice fraction Si(x,y), sur-
face temperature Ty (x,y), depth layer-weighted ocean heat
content Hy(x,y) and stratospheric aerosol optical depth
7¢(x, y). From these quantities, the emulator needs to pre-
dict Syy1, Hyy1 and Ty41, as well as other quantities of
interest to the policy optimisation objective, such as lo-
cal precipitation rates P;41(z,y). All these quantities are
returned from HadCM3 simulations as scalar grids of di-
mension 73 x 96.

To emulate HadCM3, we use an encoder-decoder network
similar to UNet (Ronneberger, 2015). We pre-train the en-
coder on ImageNet and fine-tune the output layers on 2000
output samples of HadCM3 rollouts based on aerosol den-
sity distributions drawn randomly from a 73-dimensional
Dirichlet distribution with shape parameters a, = 1.5 (to
discourage extremes) and output scaling factor p. We reject
samples violating the 4p coagulation cap.

Preliminary simulation results suggest that emulator training
would likely benefit from auxiliary tasks (Mirowski, 2016)
related to cloud cover prediction (see Figure 1).

4. Reinforcement learning setting

GCM emulator states s; and sequential aerosol injections
conditioned thereon together form a Markov Decision Pro-
cess (Bellman, 1957). At each time step the agent decides
how much aerosol to inject into each of 73 evenly spaced

latitude bands, overall selecting an action u; € RZ_?’. The en-
vironment then returns a scalar reward r; as feedback to the
agent. Optimal injection policies 7(u¢|s;) are then learnt
by maximizing the expected future-discounted cumulative
reward R; = EtT:o v're, where v € [0,1] is a discount
factor and T = 10 corresponds to an episode length of 10
years.

We employ an off-policy deep Q-learning (Mnih, 2015)
approach and discretise the action space using n,, = 10
bins of equal size for each latitude band. As the resulting
joint action space is large (107®), we factorise the joint
state-action value function. This can be achieved using
techniques originally developed for cooperative multi-agent
settings (Sunehag, 2018; Rashid, 2018). We base the value
function network architecture on a convolutional encoder
similar to the one used by the GCM emulator.

A simple choice for an upper-bounded reward function r;
that discourages extreme changes in regional climate is

— max [ap|Ap(z,y)| +or|Ar(z,y)l]
where AL is the difference between the regional precip-
itation rate and its pre-industrial average (similarly A%,
for surface temperature), A is the earth’s surface grid and
ap,ar > 0 are scalar hyperparameters. More advanced
reward functions might be weighted by additional factors of
socio-economic interest.

To ensure physical consistency and robustness, SAI control
policies learnt within the emulator are subsequently cross-
verified in HadCM3 and/or other GCMs.

5. Conclusion and Outlook

We propose the study of optimal SAI control as a high-
dimensional control problem using a fast GCM emulator
and deep reinforcement learning.

We believe that DRL may become an important tool in the
study of SAI and other geoengineering approaches, such as
marine cloud brightening, over the next decade.
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