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1. Summary

The growing population and the changing climate will push
modern agriculture to its limits in an increasing number of
regions on earth. Establishing next-generation sustainable
food supply systems will mean producing more food on less
arable land, while keeping the environmental impact to a
minimum.

Modern machine learning methods have achieved super-
human performance on a variety of tasks, simply learning
from the outcomes of their actions. We propose a path
towards more sustainable agriculture, considering plant de-
velopment an optimization problem with respect to certain
parameters, such as yield and environmental impact, which
can be optimized in an automated way. Specifically, we
propose to use reinforcement learning to autonomously ex-
plore and learn ways of influencing the development of
certain types of plants, controlling environmental param-
eters, such as irrigation or nutrient supply, and receiving
sensory feedback, such as camera images, humidity, and
moisture measurements. The trained system will thus be
able to provide instructions for optimal treatment of a local
population of plants, based on non-invasive measurements,
such as imaging.

Unlike genetic methods for plant development optimization,
which typically target one or at most a few aspects of the
development process, machine learning methods can take
into account a large number of high-dimensional variables.
We expect both greenhouse and outdoor production environ-
ments to benefit considerably from such fine-grained con-
trol systems. In particular, a learned model may be used to
achieve yield maximization under challenging environmen-
tal conditions, such as limited space, extreme temperature,
or water supply limitations.

2. Background

The upcoming agricultural challenges demand innovation
both at the genetic level (that is, which genetic factors de-
termine crop productivity and robustness to environmental
stress,) as well as the ecological level (that is, which condi-
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tions lead to environments for optimal plant development.)
While genetic methods typically only target one particular
aspect of plant development, a combination of ecological
factors can influence development as a whole. While both
approaches are complementary, we focus on the latter. Suc-
cessful and sustainable ways of improving yield under lim-
ited environmental resources will impact agriculture, and
thus humanity, on a global scale.

As an example scenario, consider the case of a prolonged
regional drought, where irrigation becomes necessary to
keep the land arable. The amount of water that can be sup-
plied might be limited, and a fixed amount might need to be
smartly distributed over the full life cycle of an organism.
Similarly, the amount of fertilizer applied throughout the life
cycle of a plant should be kept to a minimum to protect the
environment. It is not clear, however, what the best timing
for application would be: Is it best to apply a high con-
centration at germination, should small amounts be applied
continuously, or should application rates increase with ma-
turity of the plant? While best-practice knowledge naturally
exists among farmers, it is not clear how or whether specific
protocols transfer well to new scenarios, such as droughts,
extreme temperature or precipitation, shifted seasons, etc. In
general, it is not clear whether specific protocols are optimal
in that they provide the best possible conditions for a plant,
or whether more sophisticated application schedules could
lead to better results. Moreover, in modern agriculture, any
treatment is typically applied to the whole field, based on
some average assessment. However, it is likely that different
parts of a population, or even individual organisms, would
benefit from individualized treatment, such as provision of
specific nutrients, based on their actual individual condition,
rather than the average state of the culture. We intend to
tackle these points using modern machine learning methods.

Optimizing agriculture with machine learning. Deep
Learning methods deliver better-than-human performance
in various tasks, such as image analysis, game-playing, and
control (LeCun et al., 2015; Mnih et al., 2015). It is to be
expected that similarly, in agriculture, such methods can
be used as decision support systems and smart controllers,
which rival human performance. The power of machine
learning systems comes with their ability to learn from real-
world data. Rather than carrying out hard-coded behavior,
such algorithms learn by themselves, through large num-
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bers of experiments, to optimize a particular outcome. In
particular, we propose here to use reinforcement learning
methods to learn to control plant development in such a
way that a given quantity, say yield, is maximized given cer-
tain environmental and resource constraints. For instance,
this could mean dividing a fixed amount of water into in-
dividual allotments over the organisms lifespan. It could
mean to maximize yield while minimizing fertilizer admin-
istration, given certain environmental parameters, such as
temperature, moisture, and the chemical composition of the
soil. Unlike traditional control methods, deep learning sys-
tems are able to make sense of high-dimensional sensory
input, such as image data. As a result, a trained system
can infer the plant’s constitution from visual data and other
non-invasive measurements with high accuracy, and adjust
the current administration schedule accordingly, even on the
level of individual plants.

Previous applications of machine learning in agriculture
include the creation of detailed computer models and sim-
ulations of plant organisms (Marshall-Colon et al., 2017),
yield prediction through fruit counting (Ramos et al., 2017)
or satellite imaging (Pantazi et al., 2016a), disease detec-
tion (Chung et al., 2016) or parasite discovery (Ebrahimi
et al., 2017) based on visual data, and weed detection and
characterization (Pantazi et al., 2016b). To our knowledge,
however, machine learning techniques have not been di-
rectly applied to the control of essential agricultural supply
channels, such as irrigation, fertilization, and provision of
other nutrients.

3. Reinforcement learning in biological
environments

We propose an approach involving both a physical and a
modeling component, where an agent learns to control a
number of parameters affecting plant development through
reinforcement learning (Sutton et al., 1998). Rather than
interacting with a virtual environment, the agent controls
an array (minibatch) of growth chambers, equipped with
sensors and actuators to enable precise control of the envi-
ronmental conditions of the organisms at hand. Besides a
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Figure 1. llustration of the approach. After training in a controlled
environment, the learned model can be used to provide optimal
treatment recommendations in the field.

control unit and a camera, a growth chamber should contain
sensing equipment for temperature, humidity, moisture, and
more specialized chemical sensors, as well as heating and
cooling elements, tunable light sources, controllable water
inlets, and nutrient supply units. The agent model is pro-
vided with sensor readings as observations and the learned
policy emits actions controlling the actuators of the growth
chamber. A reward signal is specified based on the particu-
lar objective considered, and could involve quantities, such
as yield (volume, weight) after a given period, growth rate,
fertilizer usage, or water requirements. Given the lengthy
nature of actual plant development trials and the relatively
high sample complexity of many reinforcement learning
algorithms, it appears sensible to pre-train the model on a
simulated organism (Marshall-Colon et al., 2017) before
deploying it to the actual physical environment.

As two key scenarios, we propose to apply reinforcement
learning to fertilizer management and water management,
where the algorithm learns the best possible distribution
of a resource (nutrients, water) over time, given a set of
environmental and plant conditions. The automated sys-
tem will, through many parallel experiments, learn at which
points in time it is best to provide certain amounts of the
resource to the plant, such production is maximized, while
minimizing overall usage of the resource. The sensory data
might be augmented with virtual data, such as a noisy fore-
cast of future conditions, similar to what a weather forecast
would provide. The highly detailed plant-level data (or at
least data from a local region within a field) should enable
the algorithm to make better decisions regarding optimal
treatment of individual organisms or local populations than
what could be achieved on a per-field level. The ability of
deep learning methods to take into account large amounts
of high-dimensional sensory data should enable more pre-
cise predictions than what could be achieved with a small
number of coarse measurements, such as temperature and
precipitation.

We envision to operate several controlled growth chambers
in parallel to gather enough data for the algorithms to learn.
Initial experiments could be based on Arabidopsis thaliana
as a model species, whose small size and rapid life cycle
make it an ideal candidate for affordable, high-turnover ex-
periments, and properties of which transfer reasonably well
to other species (Rensink & Buell, 2004). Initial nutrient
supply experiments could focus on nitrogen and phosphate.
The minimization of nitrogen fertilizers is of utter impor-
tance to environmental protection. We propose to scale
the approach to monocots, such as rice, maize, or wheat,
once the experimental setup is stable. These species re-
quire more space and more time to grow, however, they are
more directly relevant to questions of food security, and
corresponding model organisms, such as Brachypodium
distachyon and Setaria viridis are sufficiently easy to grow.
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