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Abstract

Photovoltaic (PV) power generation has emerged
as one of the leading renewable energy sources.
Yet, its production is characterized by high un-
certainty, being dependent on weather conditions
like solar irradiance and temperature. Predicting
PV production, even in the 24-hour forecast, re-
mains a challenge and leads energy providers to
left idling - often carbon-emitting - plants. In
this paper, we introduce a Long-Term Recurrent
Convolutional Network using Numerical Weather
Predictions (NWP) to predict, in turn, PV pro-
duction in the 24-hour and 48-hour forecast hori-
zons. This network architecture fully leverages
both temporal and spatial weather data, sampled
over the whole geographical area of interest. We
train our model on a prediction dataset from the
National Oceanic and Atmospheric Administra-
tion (NOAA) to predict spatially aggregated PV
production in Germany. We compare its perfor-
mance to the persistence model and state-of-the-
art methods.

1. Introduction

There is an increased commitment worldwide to mitigate
greenhouse gas emissions and countries are taking actions
to better integrate renewable clean energies into their grids.
As an example, many scientific studies tackle the challenge
of photovoltaic (PV) power forecast. They rely on statistical
time-series methods, physical methods, or ensemble meth-
ods which combine different models to enhance accuracy
(Sobri et al., 2018). Widely used time-series models can
be separated into two groups: linear and non-linear models,
where the latter often shows better prediction accuracy when
enough data are available. Among non-linear time-series
models, Artificial Neural Networks (ANN) have become
increasingly popular for PV forecast (Ding et al., 2011;
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Kardakos et al., 2013; Dolara et al., 2015) and among them
Recurrent Neural Networks (Malvoni et al., 2013) and Long-
Short Term Memory Networks (Abdel-Nasser & Mahmoud,
2017; Gensler et al., 2017).

Meanwhile, flexible non-linear predictions models tak-
ing into account the spatiotemporal structure of the data,
like Long-Term Recurrent Convolutional Network (LRCN)
(Donahue et al., 2015), 2D LSTM or Convolutional LSTM
architectures (ConvLSTM) (Shi et al., 2015), have been suc-
cessfully applied to a variety of problems. LRCN models
have been used in activity recognition, image captioning
and visual question answering (Donahue et al., 2015). A
2D LSTM model has been applied to traffic forecasting
(Zhao et al., 2017) while a ConvLSTM has shown promis-
ing results on a precipitation forecast that predicts rainfall
intensity in a local region on a short time horizon (Shi et al.,
2015) (also known as nowcasting), a weather-related predic-
tion problem that shares similarities with PV forecast.

Contributions This paper presents PVNet, a PV forecast-
ing model that introduces an LRCN architecture to integrate
past PV power 1D time-series with dense spatiotemporal
NWP and physical models’ inputs. Our model extends the
state-of-the-art 1D time-series models by learning spatial
features with CNN modules, whose channels encode the
NWP and physical models variables. We focus our analysis
on the day-ahead PV forecast, whose accuracy is known
to be highly dependent on NWP integration, and which is
particularly interesting as energy market bids are placed
one day in advance. Our experimental results show that
our architecture manages to leverage these additional spatial
data for prediction accuracy. We train a non-linear predic-
tion model that reaches a high accuracy on our validation
dataset.

2. Data Representation

In what follows, t is the time, measured in hours from the
current time and (z, y) is the longitude-latitude coordinates
of a point in the region of interest.

Numerical Weather Predictions We incorporate numer-
ical weather prediction (NWP) data and their non-linear
relationships in our model. Rather than just incorporating
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the irradiance and temperature at the specific location of
the power plant(s), our model aims to leverage the full spa-
tial scalar fields of the meteorological parameters over the
whole area of interest. These forecasts can be obtained from
global forecast systems, like the ECMWF HRES model
(temporal resolution of 1 hour and spatial resolution of 0.1
degree) ! or the NOAA GFS ? (temporal resolution of 3
hours and spatial resolution of 0.5 degrees). Each of these
models provides a set of weather-related variables:
NWPi(z,y)

(D

Xnwri(z,y) = :
NW Pk (x,y)

where K is the number meteorological factors of interests.

Standard Models Predictions We also incorporate predic-
tions of standard forecast models into our feature vector. We
consider first the persistence model, a simple - yet popular -
forecast model. The persistence model (PSS) predicts that
future PV output is likely to be similar to the current value
at the same time of the day (Cornaro et al., 2015):

Xpss (xa Y, t) = va (t - Tp) )

where time 7T}, is measured in hours. Here we take two spe-
cific values of persistence. One will be used for comparing
the performance of the algorithm at 754 and the one we use
as a feature of our algorithm is at 7;g. Indeed when used in
the context of energy forecast, there is a 24 hours delay.

Second, we consider the clear sky model (CSM), which
estimates irradiance X under the assumption that there are
no clouds in the sky (Reno et al.):

XCSM,t(x7y) = CSM(t»x»%a(t;%y)) (3)

where « is a set of external variables used for the Clear Sky
Model, for example various atmospheric conditions.

Feature vector We form a feature vector X; by aggregating

the weather forecast variables with the predictions of the

standard models:

Xnwe,t(,9)
Xpss,t

Xesm,e(z,y)

Xi(z,y) = € RFH2 4)

Our feature vector incorporates both spatial weather fore-
casts as well as some predictions from existing models.

3. PVNet Model

The goal of PV power output forecasting is to use numerical
weather predictions, to forecast the future PV output in a
region, in our case: at the day ahead forecast at the scale
of a country. We consider ¢ = 0 the time at which we
make the prediction, and thus tgrecase = 24h is the forecast
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time. Precisely, we consider a sliding window of size T,
and (X4, ..., X¢,;) where X, is the feature maps at time
t, as defined in Equation 4 and t7 = tforecast- Our goal
is to predict ﬁ;(tT),, an estimate of the PV production
at the forecast horizon. Our training set is thus a set of
(Xtgttrs s Xtg+tr) s Ppo(to + tr)),, for different values
of to.

Our model presents a long term recurrent convolutional net-
work which combines a convolutional network (CNN) and
a bi-directional long short term memory (LSTM) (Schuster
& Paliwal, 1997) network, as shown in Figure 1. In practice,
we use a time window of 1" = 8 values, spread at 3 hours
time interval, so as to represent a window that is a full day
of data history.

Architecture First, we use the CNN module to encode the
spatial data into a new feature vector of lower dimension as
running the LSTM directly on the whole input tensor would
be too computationally expensive. Rather than hand-crafting
spatially aggregated features, we let the CNN learn spatial
features that are the most relevant for the following LSTM-
based PV power predictions. Then, we use Bidirectional
RNNSs (Schuster & Paliwal, 1997), taking into account past
and future data, as this has shown better efficiency over
standard LSTM where any hidden layers only have access
to past data (Arisoy et al., 2015). The BiLSTM module
designs features, at each time ¢, that take into account the
temporal structure of the input signal.

The convolutional network extracts spatial features and then
forwards them to the LSTM. We then have a fully connected
layer taking all the LSTM hidden outputs and producing a
single scalar value that is the estimated value of aggregated
PV output prediction for the whole country. We highlight
that this model differs from the ConvLSTM model from
(Shi et al., 2015), in the sense that the ConvLSTM model in-
tegrates convolutional structures directly in the LSTM cells.
Both CNN and LSTM modules are trained simultaneously,
to minimize a mean squared error loss function.

Implementation Details We implement PVNet using the
Tensorflow (Abadi et al.) framework. Our convolutional
networks are built alternating 2D convolution layers, PReLu
activations (He et al.), dropout and max pooling. There is
a 20% dropout after each convolutional layer. We added
a fully connected layer between the CNN layers and the
LSTM, with a 30% dropout in between. We use the hard sig-
moid for the recurrent activation and the hyperbolic tangent
for the activation itself.

4. Experiments

Dataset We consider an aggregated production of PV power
across Germany, from 2014 to 2018, sampled at a time reso-
lution of 15 minutes. We use NWP data from NOAA, more
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Figure 1. PVNet Architecture Details

specifically the Global Forecast System (GFS). The time
resolution of the PV power is downsampled at 3h, to match
the time resolution of the NWP. We consider K = 3 mete-
orological variables: Downward short wave radiation flux
(DSWREF), Cloud Cover (EACC) and Temperature (TMP).
We incorporate data from the persistence model (PSS) and
the Clear Sky Model (CSS). In a production setting, one
only has access to the data from the day before. Thus, we
use the persistence data from only 48 hours before the point
estimate.

Training We split the training and validation dataset as fol-
lows: first 3 years for training and the last year for validation.
This approach guarantees that our validation score is not
affected by seasonal patterns.

We train our model using the Adam optimizer (Kingma &
Ba, 2014), with a learning rate of 0.0015 and a batch size of
32. We run our training for a total of 500 epochs.

Metrics We use two metrics to evaluate the quality of
PVNet: the root mean squared error (RMSE) and mean
absolute error (MAE) of the prediction. We compute these
metrics only when the measured and predicted power is
higher than 0 (Ppy () > 0). We do not take nights into
accounts because these values tend to increase the perfor-
mance since the estimator of the PV night is Ppy (t) = 0
The normalized RMSE and MAE (nRMSE and nMAE) are
normalized with the country-wide PV capacity, which is
41.2 GW in our case.

Results Table 1 presents our results for PVNet compared to

the persistence model and the current state of the art for day
ahead country wide PV prediction (Lorenz et al., 2011). We
compute the persistence model RMSE by taking the value
of the country-aggregated prediction 24 hours before the
current value. The authors of (Lorenz et al., 2011) used data
from 2009-2010 and a different formulation of the nRMSE.
They normalized the production on a per plant basis while
we normalize it at the scale of the whole country. We re-
implement their method in order to compute the metrics
MAE, nMAE, RMSE, and nRMSE for the same times as
the ones used in our validation dataset. We refer to this
method as “L” in our table.

Table 1. PVNet Experimental Performance.

NRMSE NMAE RMSE MAE
PSS 22.04% 15.28% 8816 MW 6297 MW
L 6.11% 437% 2518 MW 1798 MW
PVNET 4.73% 3.63% 1949 MW 1499 MW

We first observe an RMSE improvement of 17.31 percents
compared to the persistence model, which is expected since
the persistence model is relatively naive. We do also use
the persistence data in our model as one of the inputs -
even though the timing is quite different. We use 24 hours
persistence for verification and 48 hours persistence as the
PVNet input layer. We also observe a 1.38% decrease in
accuracy error in nRMSE and a 0.74% decrease in accuracy
error in nMAE compared to state of the art in the country-
wide day ahead aggregation (Lorenz et al., 2011).

5. Conclusion and Future Work

Accurate PV forecast remains challenging because of its
correlation with highly fluctuating weather variables. This
paper introduced PVNet, a country-wide PV forecast model
that fully integrates 1D time-series of past PV power with
dense spatiotemporal exogenous inputs. The model enjoys
good prediction performances, with a decrease in nRMSE
of 1.38% compared to the state-of-the-art model for country-
aggregated PV output prediction. The model also demon-
strates inference capability, e. g. learning the geographic
impact of different meteorological factors on the PV power
prediction and the surface density of PV power production
for a given area.

Our future work will involve the addition of interpolation
of NWP inputs, in order to avoid temporal down-sampling
and data loss, and adding new spatial information, like satel-
lite imagery or fish-eye data imagery. Our objective is to
enable a secure and economic integration of PV power into
countries’ smart energy grids.
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